# American Institute of Mathematical Sciences

June  2019, 13(3): 679-701. doi: 10.3934/ipi.2019031

## Momentum ray transforms

 1 TIFR Centre for Applicable Mathematics, Sharada Nagar, Chikkabommasandra, Yelahanka New Town, Bangalore, India 2 Sobolev Institute of Mathematics; 4 Koptyug Avenue, Novosibirsk, 630090, Russia 3 Novosibirsk State University, 2 Pirogov street, 630090, Russia

Received  July 2018 Revised  October 2018 Published  March 2019

Fund Project: The first author was supported by US NSF grant DMS 1616564 and a SERB Matrics Grant, MTR/2017/000837.
The second author was supported by SERB National Postdoctoral fellowship, PDF/2017/002780.
The first three authors were supported by Airbus Corporate Foundation Chair grant "Mathematics of Complex Systems" established at TIFR CAM and TIFR ICTS, Bangalore, India.
The work was started when the last author visited TIFR CAM January 2017. The author is grateful to the institute for the support and hospitality.
The last author was supported by RFBR, Grant 17-51-150001.

The momentum ray transform $I^k$ integrates a rank $m$ symmetric tensor field $f$ over lines in $\mathbb{R}^n$ with the weight $t^k$: $(I^k\!f)(x,\xi) = \int_{-\infty}^\infty t^k\langle f(x+t\xi),\xi^m\rangle\, \mathrm{d} t.$ In particular, the ray transform $I = I^0$ was studied by several authors since it had many tomographic applications. We present an algorithm for recovering $f$ from the data $(I^0\!f,I^1\!f,\dots, I^m\!f)$. In the cases of $m = 1$ and $m = 2$, we derive the Reshetnyak formula that expresses $\|f\|_{H^s_t({\mathbb R}^n)}$ through some norm of $(I^0\!f,I^1\!f,\dots, I^m\!f)$. The $H^{s}_{t}$-norm is a modification of the Sobolev norm weighted differently at high and low frequencies. Using the Reshetnyak formula, we obtain a stability estimate.

Citation: Venkateswaran P. Krishnan, Ramesh Manna, Suman Kumar Sahoo, Vladimir A. Sharafutdinov. Momentum ray transforms. Inverse Problems & Imaging, 2019, 13 (3) : 679-701. doi: 10.3934/ipi.2019031
##### References:
 [1] A. Abhishek and R. K. Mishra, Support theorems and an injectivity result for integral moments of a symmetric m-tensor field, https://arXiv.org/abs/1704.02010, Journal of Fourier Analysis and Applications, 2018, 1–26. doi: 10.1007/s00041-018-09649-7.  Google Scholar [2] P. Kuchment and F. Terizoglu, Inversion of weighted divergent beam and cone transforms, Inverse Problems and Imaging, 11 (2017), 1071-1090.  doi: 10.3934/ipi.2017049.  Google Scholar [3] W. Lionheart and V. A. Sharafutdinov, Reconstruction algorithm for the linearized polarization tomography problem with incomplete data, in Imaging Microstructures: Mathematical and Computational Challenges, Ed. Habib Ammari and Hyeonbae Kang, Contemporary Mathematics, 494 (2009), 137–159. doi: 10.1090/conm/494/09648.  Google Scholar [4] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-posed Problems Series. VSP, Utrecht, 1994. doi: 10.1515/9783110900095.  Google Scholar [5] V. A. Sharafutdinov, The Reshetnyak formula and Natterer stability estimates in tensor tomography, Inverse Problems, 33 (2017), 025002, 20pp. doi: 10.1088/1361-6420/33/2/025002.  Google Scholar [6] V. A. Sharafutdinov and J.-N. Wang, Tomography of small residual stresses, Inverse Problems, 28 (2012), 065017, 17 pp. doi: 10.1088/0266-5611/28/6/065017.  Google Scholar

show all references

##### References:
 [1] A. Abhishek and R. K. Mishra, Support theorems and an injectivity result for integral moments of a symmetric m-tensor field, https://arXiv.org/abs/1704.02010, Journal of Fourier Analysis and Applications, 2018, 1–26. doi: 10.1007/s00041-018-09649-7.  Google Scholar [2] P. Kuchment and F. Terizoglu, Inversion of weighted divergent beam and cone transforms, Inverse Problems and Imaging, 11 (2017), 1071-1090.  doi: 10.3934/ipi.2017049.  Google Scholar [3] W. Lionheart and V. A. Sharafutdinov, Reconstruction algorithm for the linearized polarization tomography problem with incomplete data, in Imaging Microstructures: Mathematical and Computational Challenges, Ed. Habib Ammari and Hyeonbae Kang, Contemporary Mathematics, 494 (2009), 137–159. doi: 10.1090/conm/494/09648.  Google Scholar [4] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-posed Problems Series. VSP, Utrecht, 1994. doi: 10.1515/9783110900095.  Google Scholar [5] V. A. Sharafutdinov, The Reshetnyak formula and Natterer stability estimates in tensor tomography, Inverse Problems, 33 (2017), 025002, 20pp. doi: 10.1088/1361-6420/33/2/025002.  Google Scholar [6] V. A. Sharafutdinov and J.-N. Wang, Tomography of small residual stresses, Inverse Problems, 28 (2012), 065017, 17 pp. doi: 10.1088/0266-5611/28/6/065017.  Google Scholar
 [1] Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79. [2] Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052 [3] Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems & Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453 [4] Aleksander Denisiuk. On range condition of the tensor x-ray transform in $\mathbb R^n$. Inverse Problems & Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020 [5] Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052 [6] Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010 [7] Guillaume Bal, Alexandre Jollivet. Stability estimates in stationary inverse transport. Inverse Problems & Imaging, 2008, 2 (4) : 427-454. doi: 10.3934/ipi.2008.2.427 [8] Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27 [9] Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801 [10] Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551 [11] Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems & Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003 [12] Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471 [13] Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems & Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061 [14] Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009 [15] Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems & Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317 [16] Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems & Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013 [17] François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems & Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713 [18] Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619 [19] Mark Hubenthal. The broken ray transform in $n$ dimensions with flat reflecting boundary. Inverse Problems & Imaging, 2015, 9 (1) : 143-161. doi: 10.3934/ipi.2015.9.143 [20] James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems & Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

2018 Impact Factor: 1.469