January  2015, 2(1): 51-64. doi: 10.3934/jcd.2015.2.51

An elementary way to rigorously estimate convergence to equilibrium and escape rates

1. 

Dipartimento di Matematica Applicata, Università di Pisa, Via Bonanno Pisano

2. 

Instituto de Matemática, UFRJ Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco C Cidade Universitária, Ilha do Fundão, Caixa Postal 68530 21941-909 Rio de Janeiro, RJ, Brazil

3. 

Laboratoire de Mathématiques, CNRS UMR 6205, Université de Bretagne Occidentale, 6 av. Victor Le Gorgeu, CS 93837, 29238 BREST Cedex 3

Received  April 2014 Revised  January 2015 Published  August 2015

We show an elementary method to obtain (finite time and asymptotic) computer assisted explicit upper bounds on convergence to equilibrium (decay of correlations) and escape rates for systems satisfying a Lasota Yorke inequality. The bounds are deduced from the ones of suitable approximations of the system's transfer operator. We also present some rigorous experiments on some nontrivial example.
Citation: Stefano Galatolo, Isaia Nisoli, Benoît Saussol. An elementary way to rigorously estimate convergence to equilibrium and escape rates. Journal of Computational Dynamics, 2015, 2 (1) : 51-64. doi: 10.3934/jcd.2015.2.51
References:
[1]

V. Araujo, S. Galatolo and M. J. Pacifico, Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors,, Mathematiche Zeitcrift, 276 (2014), 1001.  doi: 10.1007/s00209-013-1231-0.  Google Scholar

[2]

W. Bahsoun, C. Bose and G. Froyland, (Eds.), Ergodic Theory, Open Dynamics, and Coherent Structures,, Springer Proceedings in Mathematics & Statistics, (2014).  doi: 10.1007/978-1-4939-0419-8.  Google Scholar

[3]

W. Bahsoun, Rigorous numerical approximation of escape rates,, Nonlinearity, 19 (2006), 2529.  doi: 10.1088/0951-7715/19/11/002.  Google Scholar

[4]

W. Bahsoun and C. Bose, Invariant densities and escape rates: Rigorous and computable approximations in the $L^{\infty }$,, Nonlinear Analysis, 74 (2011), 4481.  doi: 10.1016/j.na.2011.04.012.  Google Scholar

[5]

V. Baladi and M. Holschneider, Approximation of nonessential spectrum of transfer operators,, Nonlinearity Nonlinearity, 12 (1999), 525.  doi: 10.1088/0951-7715/12/3/006.  Google Scholar

[6]

L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence,, Comm. Math. Phys., 219 (2001), 443.  doi: 10.1007/s002200100427.  Google Scholar

[7]

C. Bose, G. Froyland, C. Gonzales-Tokman and R. Murray, Ulam's Method for Lasota Yorke maps with holes,, , ().   Google Scholar

[8]

M. D. Boshernitzan, Quantitative recurrence results,, Inv. Math., 113 (1993), 617.  doi: 10.1007/BF01244320.  Google Scholar

[9]

M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems,, Handbook of dynamical systems, 2 (2002), 221.  doi: 10.1016/S1874-575X(02)80026-1.  Google Scholar

[10]

G. Froyland, Extracting dynamical behaviour via Markov models,, in Alistair Mees, (1998), 281.   Google Scholar

[11]

G. Froyland, Computer-assisted bounds for the rate of decay of correlations,, Comm. Math. Phys., 189 (1997), 237.  doi: 10.1007/s002200050198.  Google Scholar

[12]

S. Galatolo and I. Nisoli, An elementary approach to rigorous approximation of invariant measures,, SIAM J. Appl Dyn Sys., 13 (2014), 958.  doi: 10.1137/130911044.  Google Scholar

[13]

S. Galatolo, Dimension and hitting time in rapidly mixing systems,, Math. Res. Lett., 14 (2007), 797.  doi: 10.4310/MRL.2007.v14.n5.a8.  Google Scholar

[14]

S. Galatolo and I. Nisoli, Rigorous computation of invariant measures and fractal dimension for piecewise hyperbolic maps: 2D Lorenz like maps,, , ().   Google Scholar

[15]

B. Hunt, Estimating invariant measures and Lyapunov exponents,, Erg. Th. Dyn. Sys., 16 (1996), 735.  doi: 10.1017/S014338570000907X.  Google Scholar

[16]

G. Keller and C. Liverani, Stability of the spectrum for transfer operators,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 141.   Google Scholar

[17]

O. Ippei, Computer-assisted verification method for invariant densities and rates of decay of correlations,, SIAM J. Applied Dynamical Systems, 10 (2011), 788.  doi: 10.1137/09077864X.  Google Scholar

[18]

O. E. Lanford III, Informal remarks on the orbit structure of discrete approximations to chaotic maps,, Exp. Math., 7 (1998), 317.  doi: 10.1080/10586458.1998.10504377.  Google Scholar

[19]

A. Lasota and J. Yorke, On the existence of invariant measures for piecewise monotonic transformations,, Trans. Amer. Math. Soc., 186 (1973), 481.  doi: 10.1090/S0002-9947-1973-0335758-1.  Google Scholar

[20]

C. Liverani, Rigorous numerical investigations of the statistical properties of piecewise expanding maps-A feasibility study,, Nonlinearity, 14 (2001), 463.  doi: 10.1088/0951-7715/14/3/303.  Google Scholar

[21]

C. Liverani, Invariant Measures and Their Properties. A Functional Analytic Point of View,, Dynamical Systems. Part II: Topological Geometrical and Ergodic Properties of Dynamics. Centro di Ricerca Matematica, (2004).   Google Scholar

show all references

References:
[1]

V. Araujo, S. Galatolo and M. J. Pacifico, Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors,, Mathematiche Zeitcrift, 276 (2014), 1001.  doi: 10.1007/s00209-013-1231-0.  Google Scholar

[2]

W. Bahsoun, C. Bose and G. Froyland, (Eds.), Ergodic Theory, Open Dynamics, and Coherent Structures,, Springer Proceedings in Mathematics & Statistics, (2014).  doi: 10.1007/978-1-4939-0419-8.  Google Scholar

[3]

W. Bahsoun, Rigorous numerical approximation of escape rates,, Nonlinearity, 19 (2006), 2529.  doi: 10.1088/0951-7715/19/11/002.  Google Scholar

[4]

W. Bahsoun and C. Bose, Invariant densities and escape rates: Rigorous and computable approximations in the $L^{\infty }$,, Nonlinear Analysis, 74 (2011), 4481.  doi: 10.1016/j.na.2011.04.012.  Google Scholar

[5]

V. Baladi and M. Holschneider, Approximation of nonessential spectrum of transfer operators,, Nonlinearity Nonlinearity, 12 (1999), 525.  doi: 10.1088/0951-7715/12/3/006.  Google Scholar

[6]

L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence,, Comm. Math. Phys., 219 (2001), 443.  doi: 10.1007/s002200100427.  Google Scholar

[7]

C. Bose, G. Froyland, C. Gonzales-Tokman and R. Murray, Ulam's Method for Lasota Yorke maps with holes,, , ().   Google Scholar

[8]

M. D. Boshernitzan, Quantitative recurrence results,, Inv. Math., 113 (1993), 617.  doi: 10.1007/BF01244320.  Google Scholar

[9]

M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems,, Handbook of dynamical systems, 2 (2002), 221.  doi: 10.1016/S1874-575X(02)80026-1.  Google Scholar

[10]

G. Froyland, Extracting dynamical behaviour via Markov models,, in Alistair Mees, (1998), 281.   Google Scholar

[11]

G. Froyland, Computer-assisted bounds for the rate of decay of correlations,, Comm. Math. Phys., 189 (1997), 237.  doi: 10.1007/s002200050198.  Google Scholar

[12]

S. Galatolo and I. Nisoli, An elementary approach to rigorous approximation of invariant measures,, SIAM J. Appl Dyn Sys., 13 (2014), 958.  doi: 10.1137/130911044.  Google Scholar

[13]

S. Galatolo, Dimension and hitting time in rapidly mixing systems,, Math. Res. Lett., 14 (2007), 797.  doi: 10.4310/MRL.2007.v14.n5.a8.  Google Scholar

[14]

S. Galatolo and I. Nisoli, Rigorous computation of invariant measures and fractal dimension for piecewise hyperbolic maps: 2D Lorenz like maps,, , ().   Google Scholar

[15]

B. Hunt, Estimating invariant measures and Lyapunov exponents,, Erg. Th. Dyn. Sys., 16 (1996), 735.  doi: 10.1017/S014338570000907X.  Google Scholar

[16]

G. Keller and C. Liverani, Stability of the spectrum for transfer operators,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 141.   Google Scholar

[17]

O. Ippei, Computer-assisted verification method for invariant densities and rates of decay of correlations,, SIAM J. Applied Dynamical Systems, 10 (2011), 788.  doi: 10.1137/09077864X.  Google Scholar

[18]

O. E. Lanford III, Informal remarks on the orbit structure of discrete approximations to chaotic maps,, Exp. Math., 7 (1998), 317.  doi: 10.1080/10586458.1998.10504377.  Google Scholar

[19]

A. Lasota and J. Yorke, On the existence of invariant measures for piecewise monotonic transformations,, Trans. Amer. Math. Soc., 186 (1973), 481.  doi: 10.1090/S0002-9947-1973-0335758-1.  Google Scholar

[20]

C. Liverani, Rigorous numerical investigations of the statistical properties of piecewise expanding maps-A feasibility study,, Nonlinearity, 14 (2001), 463.  doi: 10.1088/0951-7715/14/3/303.  Google Scholar

[21]

C. Liverani, Invariant Measures and Their Properties. A Functional Analytic Point of View,, Dynamical Systems. Part II: Topological Geometrical and Ergodic Properties of Dynamics. Centro di Ricerca Matematica, (2004).   Google Scholar

[1]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[2]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[3]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[4]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[5]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[6]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[7]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[8]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[9]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[10]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[11]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[12]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[13]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[14]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[15]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[16]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[17]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[18]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[19]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[20]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

 Impact Factor: 

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]