January  2015, 2(1): 65-81. doi: 10.3934/jcd.2015.2.65

Numerical event-based ISS controller design via a dynamic game approach

1. 

University of Bayreuth, Chair of Applied Mathematics, Universitätsstraße 30, 95440 Bayreuth

2. 

University of Bayreuth, Chair of Applied Mathematics, Universitãtsstraße 30, 95440 Bayreuth, Germany

Received  April 2014 Revised  January 2015 Published  August 2015

We present an event-based numerical design method for an input-to-state practically stabilizing (ISpS) state feedback controller for perturbed nonlinear discrete time systems. The controllers are designed to be constant on quantization regions which are not assumed to be small. A transition of the state from one quantization region to another triggers an event upon which the control value changes.
    The controller construction relies on the conversion of the ISpS design problem into a robust controller design problem which is solved by a set oriented discretization technique followed by the solution of a dynamic game on a hypergraph. We present and analyze this approach with a particular focus on keeping track of the quantitative dependence of the resulting gain and the size of the exceptional region for practical stability from the design parameters of our event-based controller.
Citation: Lars Grüne, Manuela Sigurani. Numerical event-based ISS controller design via a dynamic game approach. Journal of Computational Dynamics, 2015, 2 (1) : 65-81. doi: 10.3934/jcd.2015.2.65
References:
[1]

K. Arzén, A simple event-based PID controller,, in Proc. 14th IFAC World Congress, (1999), 423.   Google Scholar

[2]

K. J. Åström and B. Bernhardsson, Comparison of periodic and event-based sampling for first-order stochastic systems,, in Proc. 14th IFAC World Congress, (1999), 301.   Google Scholar

[3]

M. Bardi and J. P. Maldonado López, A Dijkstra-type algorithm for dynamic games, Dynamic Games and Applications,, Springer US, (2015), 1.  doi: 10.1007/s13235-015-0156-0.  Google Scholar

[4]

C. De Persis, R. Sailer and F. Wirth, On a small-gain approach to distributed event-triggered control,, in Proc. 14th IFAC World Congress, (2011), 2401.   Google Scholar

[5]

M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations,, SIAM, (2014).   Google Scholar

[6]

P. J. Gawthrop and L. B. Wang, Event-driven intermittent control,, International Journal of Control, 82 (2009), 2235.  doi: 10.1080/00207170902978115.  Google Scholar

[7]

P. Giesl and S. Hafstein, Existence of piecewise linear Lyapunov functions in arbitrary dimensions,, Discrete Contin. Dyn. Syst., 32 (2012), 3539.  doi: 10.3934/dcds.2012.32.3539.  Google Scholar

[8]

P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, vol. 1904 of Lecture Notes in Mathematics,, Springer, (2007).   Google Scholar

[9]

L. Grüne, S. Jerg, O. Junge, D. Lehmann, J. Lunze, F. Müller and M. Post, Two complementary approaches to event-based control,, at-Automatisierungstechnik (Special Issue on Networked Control Systems), 58 (2010), 173.   Google Scholar

[10]

L. Grüne and O. Junge, A set oriented approach to optimal feedback stabilization,, Systems Control Lett., 54 (2005), 169.  doi: 10.1016/j.sysconle.2004.08.005.  Google Scholar

[11]

L. Grüne and O. Junge, Approximately optimal nonlinear stabilization with preservation of the Lyapunov function property,, in Proceedings of the 46th IEEE Conference on Decision and Control, (2007), 702.   Google Scholar

[12]

L. Grüne and O. Junge, Global optimal control of perturbed systems,, J. Optim. Theory Appl., 136 (2008), 411.  doi: 10.1007/s10957-007-9312-z.  Google Scholar

[13]

L. Grüne and C. Kellet, ISS-Lyapunov functions for discontinuous discrete-time systems,, IEEE Trans. Autom. Control, 59 (2014), 3098.  doi: 10.1109/TAC.2014.2321667.  Google Scholar

[14]

L. Grüne and F. Müller, Set oriented optimal control using past information,, in Proc. 18th International Symposium on Mathematical Theory of Networks and Systems (MTNS2008), (2008).   Google Scholar

[15]

L. Grüne and F. Müller, An algorithm for event-based optimal feedback control,, in Proceedings of the 48th IEEE Conference on Decision and Control, (2009), 5311.   Google Scholar

[16]

L. Grüne and M. Sigurani, Numerical ISS controller design via a dynamic game approach,, in Proceedings of the 52nd IEEE Conference on Decision and Control, (2013), 1732.   Google Scholar

[17]

S. F. Hafstein, An Algorithm for Constructing Lyapunov Functions, vol. 8 of Electronic Journal of Differential Equations. Monograph,, Texas State University-San Marcos, (2007).   Google Scholar

[18]

Z.-P. Jiang and Y. Wang, Input-to-state stability for discrete-time nonlinear systems,, Automatica, 37 (2001), 857.  doi: 10.1016/S0005-1098(01)00028-0.  Google Scholar

[19]

Z.-P. Jiang and Y. Wang, A converse Lyapunov theorem for discrete-time systems with disturbances,, Systems Control Lett., 45 (2002), 49.  doi: 10.1016/S0167-6911(01)00164-5.  Google Scholar

[20]

O. Junge and H. M. Osinga, A set oriented approach to global optimal control,, ESAIM Control Optim. Calc. Var., 10 (2004), 259.  doi: 10.1051/cocv:2004006.  Google Scholar

[21]

J. Lunze (ed.), Control Theory of Digitally Networked Systems,, Springer, (2014).  doi: 10.1007/978-3-319-01131-8.  Google Scholar

[22]

J. Lunze and D. Lehmann, A state-feedback approach to event-based control,, Automatica, 46 (2010), 211.  doi: 10.1016/j.automatica.2009.10.035.  Google Scholar

[23]

M. Mazo and P. Tabuada, Decentralized event-triggered control over wireless sensor/actuator networks,, IEEE Trans. Autom. Control, 56 (2010), 2456.  doi: 10.1109/TAC.2011.2164036.  Google Scholar

[24]

M. Sigurani, C. Stöcker, L. Grüne and J. Lunze, Experimental evaluation of two complementary decentralized event-based control methods,, Control Eng. Practice, 35 (2015), 22.  doi: 10.1016/j.conengprac.2014.10.002.  Google Scholar

[25]

P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks,, IEEE Trans. Autom. Control, 52 (2007), 1680.  doi: 10.1109/TAC.2007.904277.  Google Scholar

[26]

M. von Lossow, A min-max version of Dijkstra's algorithm with application to perturbed optimal control problems,, in Proc. Appl. Math. Mech. (PAMM), 7 (2007), 4130027.  doi: 10.1002/pamm.200700646.  Google Scholar

[27]

X. Wang and M. D. Lemmon, Attentively efficient controllers for event-triggered feedback systems,, in Proc. 50th IEEE Conference on Decision and Control and European Control Conference, (2011), 4698.  doi: 10.1109/CDC.2011.6160699.  Google Scholar

[28]

X. Wang and M. D. Lemmon, On event design in event-triggered feedback systems,, Automatica, 47 (2011), 2319.  doi: 10.1016/j.automatica.2011.05.027.  Google Scholar

[29]

H. Yu and P. J. Antsaklis, Event-triggered real-time scheduling for stabilization of passive and output feedback passive systems,, in Proc. American Control Conference, (2011), 1674.   Google Scholar

show all references

References:
[1]

K. Arzén, A simple event-based PID controller,, in Proc. 14th IFAC World Congress, (1999), 423.   Google Scholar

[2]

K. J. Åström and B. Bernhardsson, Comparison of periodic and event-based sampling for first-order stochastic systems,, in Proc. 14th IFAC World Congress, (1999), 301.   Google Scholar

[3]

M. Bardi and J. P. Maldonado López, A Dijkstra-type algorithm for dynamic games, Dynamic Games and Applications,, Springer US, (2015), 1.  doi: 10.1007/s13235-015-0156-0.  Google Scholar

[4]

C. De Persis, R. Sailer and F. Wirth, On a small-gain approach to distributed event-triggered control,, in Proc. 14th IFAC World Congress, (2011), 2401.   Google Scholar

[5]

M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations,, SIAM, (2014).   Google Scholar

[6]

P. J. Gawthrop and L. B. Wang, Event-driven intermittent control,, International Journal of Control, 82 (2009), 2235.  doi: 10.1080/00207170902978115.  Google Scholar

[7]

P. Giesl and S. Hafstein, Existence of piecewise linear Lyapunov functions in arbitrary dimensions,, Discrete Contin. Dyn. Syst., 32 (2012), 3539.  doi: 10.3934/dcds.2012.32.3539.  Google Scholar

[8]

P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, vol. 1904 of Lecture Notes in Mathematics,, Springer, (2007).   Google Scholar

[9]

L. Grüne, S. Jerg, O. Junge, D. Lehmann, J. Lunze, F. Müller and M. Post, Two complementary approaches to event-based control,, at-Automatisierungstechnik (Special Issue on Networked Control Systems), 58 (2010), 173.   Google Scholar

[10]

L. Grüne and O. Junge, A set oriented approach to optimal feedback stabilization,, Systems Control Lett., 54 (2005), 169.  doi: 10.1016/j.sysconle.2004.08.005.  Google Scholar

[11]

L. Grüne and O. Junge, Approximately optimal nonlinear stabilization with preservation of the Lyapunov function property,, in Proceedings of the 46th IEEE Conference on Decision and Control, (2007), 702.   Google Scholar

[12]

L. Grüne and O. Junge, Global optimal control of perturbed systems,, J. Optim. Theory Appl., 136 (2008), 411.  doi: 10.1007/s10957-007-9312-z.  Google Scholar

[13]

L. Grüne and C. Kellet, ISS-Lyapunov functions for discontinuous discrete-time systems,, IEEE Trans. Autom. Control, 59 (2014), 3098.  doi: 10.1109/TAC.2014.2321667.  Google Scholar

[14]

L. Grüne and F. Müller, Set oriented optimal control using past information,, in Proc. 18th International Symposium on Mathematical Theory of Networks and Systems (MTNS2008), (2008).   Google Scholar

[15]

L. Grüne and F. Müller, An algorithm for event-based optimal feedback control,, in Proceedings of the 48th IEEE Conference on Decision and Control, (2009), 5311.   Google Scholar

[16]

L. Grüne and M. Sigurani, Numerical ISS controller design via a dynamic game approach,, in Proceedings of the 52nd IEEE Conference on Decision and Control, (2013), 1732.   Google Scholar

[17]

S. F. Hafstein, An Algorithm for Constructing Lyapunov Functions, vol. 8 of Electronic Journal of Differential Equations. Monograph,, Texas State University-San Marcos, (2007).   Google Scholar

[18]

Z.-P. Jiang and Y. Wang, Input-to-state stability for discrete-time nonlinear systems,, Automatica, 37 (2001), 857.  doi: 10.1016/S0005-1098(01)00028-0.  Google Scholar

[19]

Z.-P. Jiang and Y. Wang, A converse Lyapunov theorem for discrete-time systems with disturbances,, Systems Control Lett., 45 (2002), 49.  doi: 10.1016/S0167-6911(01)00164-5.  Google Scholar

[20]

O. Junge and H. M. Osinga, A set oriented approach to global optimal control,, ESAIM Control Optim. Calc. Var., 10 (2004), 259.  doi: 10.1051/cocv:2004006.  Google Scholar

[21]

J. Lunze (ed.), Control Theory of Digitally Networked Systems,, Springer, (2014).  doi: 10.1007/978-3-319-01131-8.  Google Scholar

[22]

J. Lunze and D. Lehmann, A state-feedback approach to event-based control,, Automatica, 46 (2010), 211.  doi: 10.1016/j.automatica.2009.10.035.  Google Scholar

[23]

M. Mazo and P. Tabuada, Decentralized event-triggered control over wireless sensor/actuator networks,, IEEE Trans. Autom. Control, 56 (2010), 2456.  doi: 10.1109/TAC.2011.2164036.  Google Scholar

[24]

M. Sigurani, C. Stöcker, L. Grüne and J. Lunze, Experimental evaluation of two complementary decentralized event-based control methods,, Control Eng. Practice, 35 (2015), 22.  doi: 10.1016/j.conengprac.2014.10.002.  Google Scholar

[25]

P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks,, IEEE Trans. Autom. Control, 52 (2007), 1680.  doi: 10.1109/TAC.2007.904277.  Google Scholar

[26]

M. von Lossow, A min-max version of Dijkstra's algorithm with application to perturbed optimal control problems,, in Proc. Appl. Math. Mech. (PAMM), 7 (2007), 4130027.  doi: 10.1002/pamm.200700646.  Google Scholar

[27]

X. Wang and M. D. Lemmon, Attentively efficient controllers for event-triggered feedback systems,, in Proc. 50th IEEE Conference on Decision and Control and European Control Conference, (2011), 4698.  doi: 10.1109/CDC.2011.6160699.  Google Scholar

[28]

X. Wang and M. D. Lemmon, On event design in event-triggered feedback systems,, Automatica, 47 (2011), 2319.  doi: 10.1016/j.automatica.2011.05.027.  Google Scholar

[29]

H. Yu and P. J. Antsaklis, Event-triggered real-time scheduling for stabilization of passive and output feedback passive systems,, in Proc. American Control Conference, (2011), 1674.   Google Scholar

[1]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[2]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[3]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[5]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[6]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[7]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[8]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[9]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[10]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[11]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[12]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[13]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[14]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[15]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[16]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[17]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[18]

Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2020056

[19]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[20]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

 Impact Factor: 

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]