January  2015, 2(1): 83-93. doi: 10.3934/jcd.2015.2.83

Attraction-based computation of hyperbolic Lagrangian coherent structures

1. 

ETH Zürich, Institute of Mechanical Systems, Leonhardstrasse 21, 8092 Zürich, Switzerland, Switzerland

2. 

ETH Zürich, Institute of Mechanical Systems, Rämistrasse 101, 8092 Zürich, Switzerland

Received  May 2014 Revised  October 2014 Published  August 2015

Recent advances enable the simultaneous computation of both attracting and repelling families of Lagrangian Coherent Structures (LCS) at the same initial or final time of interest. Obtaining LCS positions at intermediate times, however, has been problematic, because either the repelling or the attracting family is unstable with respect to numerical advection in a given time direction. Here we develop a new approach to compute arbitrary positions of hyperbolic LCS in a numerically robust fashion. Our approach only involves the advection of attracting material surfaces, thereby providing accurate LCS tracking at low computational cost. We illustrate the advantages of this approach on a simple model and on a turbulent velocity data set.
Citation: Daniel Karrasch, Mohammad Farazmand, George Haller. Attraction-based computation of hyperbolic Lagrangian coherent structures. Journal of Computational Dynamics, 2015, 2 (1) : 83-93. doi: 10.3934/jcd.2015.2.83
References:
[1]

M. Farazmand, D. Blazevski and G. Haller, Shearless transport barriers in unsteady two-dimensional flows and maps,, Physica D, 278-279 (2014), 278. doi: 10.1016/j.physd.2014.03.008. Google Scholar

[2]

M. Farazmand and G. Haller, Computing Lagrangian coherent structures from their variational theory,, Chaos, 22 (2012). doi: 10.1063/1.3690153. Google Scholar

[3]

M. Farazmand and G. Haller, Attracting and repelling Lagrangian coherent structures from a single computation,, Chaos, 23 (2013). doi: 10.1063/1.4800210. Google Scholar

[4]

M. Farazmand and G. Haller, How coherent are the vortices of two-dimensional turbulence?,, submitted preprint, (). Google Scholar

[5]

G. Haller, Lagrangian Coherent Structures,, Annual Review of Fluid Mechanics, 47 (2015), 137. doi: 10.1146/annurev-fluid-010313-141322. Google Scholar

[6]

G. Haller and F. J. Beron-Vera, Geodesic theory of transport barriers in two-dimensional flows,, Physica D, 241 (2012), 1680. doi: 10.1016/j.physd.2012.06.012. Google Scholar

[7]

G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent,, Chaos, 21 (2011). doi: 10.1063/1.3579597. Google Scholar

[8]

G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352. doi: 10.1016/S0167-2789(00)00142-1. Google Scholar

[9]

D. Karrasch, Attracting Lagrangian coherent structures on Riemannian manifolds,, Chaos, 25 (2015). Google Scholar

[10]

A. M. Mancho, D. Small, S. Wiggins and K. Ide, Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields,, Physica D, 182 (2003), 188. doi: 10.1016/S0167-2789(03)00152-0. Google Scholar

[11]

K. Onu, F. Huhn and G. Haller, LCS Tool: A computational platform for Lagrangian coherent structures,, Journal of Computational Science, 7 (2015), 26. doi: 10.1016/j.jocs.2014.12.002. Google Scholar

[12]

R. Peikert and F. Sadlo, Height Ridge Computation and Filtering for Visualization,, in Visualization Symposium, (2008), 119. doi: 10.1109/PACIFICVIS.2008.4475467. Google Scholar

[13]

B. Schindler, R. Peikert, R. Fuchs and H. Theisel, Ridge Concepts for the Visualization of Lagrangian Coherent Structures,, in Topological Methods in Data Analysis and Visualization II (eds. R. Peikert, (2012), 221. doi: 10.1007/978-3-642-23175-9_15. Google Scholar

[14]

K.-F. Tchon, J. Dompierre, M.-G. Vallet, F. Guibault and R. Camarero, Two-dimensional metric tensor visualization using pseudo-meshes,, Engineering with Computers, 22 (2006), 121. doi: 10.1007/s00366-006-0012-3. Google Scholar

show all references

References:
[1]

M. Farazmand, D. Blazevski and G. Haller, Shearless transport barriers in unsteady two-dimensional flows and maps,, Physica D, 278-279 (2014), 278. doi: 10.1016/j.physd.2014.03.008. Google Scholar

[2]

M. Farazmand and G. Haller, Computing Lagrangian coherent structures from their variational theory,, Chaos, 22 (2012). doi: 10.1063/1.3690153. Google Scholar

[3]

M. Farazmand and G. Haller, Attracting and repelling Lagrangian coherent structures from a single computation,, Chaos, 23 (2013). doi: 10.1063/1.4800210. Google Scholar

[4]

M. Farazmand and G. Haller, How coherent are the vortices of two-dimensional turbulence?,, submitted preprint, (). Google Scholar

[5]

G. Haller, Lagrangian Coherent Structures,, Annual Review of Fluid Mechanics, 47 (2015), 137. doi: 10.1146/annurev-fluid-010313-141322. Google Scholar

[6]

G. Haller and F. J. Beron-Vera, Geodesic theory of transport barriers in two-dimensional flows,, Physica D, 241 (2012), 1680. doi: 10.1016/j.physd.2012.06.012. Google Scholar

[7]

G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent,, Chaos, 21 (2011). doi: 10.1063/1.3579597. Google Scholar

[8]

G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352. doi: 10.1016/S0167-2789(00)00142-1. Google Scholar

[9]

D. Karrasch, Attracting Lagrangian coherent structures on Riemannian manifolds,, Chaos, 25 (2015). Google Scholar

[10]

A. M. Mancho, D. Small, S. Wiggins and K. Ide, Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields,, Physica D, 182 (2003), 188. doi: 10.1016/S0167-2789(03)00152-0. Google Scholar

[11]

K. Onu, F. Huhn and G. Haller, LCS Tool: A computational platform for Lagrangian coherent structures,, Journal of Computational Science, 7 (2015), 26. doi: 10.1016/j.jocs.2014.12.002. Google Scholar

[12]

R. Peikert and F. Sadlo, Height Ridge Computation and Filtering for Visualization,, in Visualization Symposium, (2008), 119. doi: 10.1109/PACIFICVIS.2008.4475467. Google Scholar

[13]

B. Schindler, R. Peikert, R. Fuchs and H. Theisel, Ridge Concepts for the Visualization of Lagrangian Coherent Structures,, in Topological Methods in Data Analysis and Visualization II (eds. R. Peikert, (2012), 221. doi: 10.1007/978-3-642-23175-9_15. Google Scholar

[14]

K.-F. Tchon, J. Dompierre, M.-G. Vallet, F. Guibault and R. Camarero, Two-dimensional metric tensor visualization using pseudo-meshes,, Engineering with Computers, 22 (2006), 121. doi: 10.1007/s00366-006-0012-3. Google Scholar

[1]

Michael Dellnitz, Christian Horenkamp. The efficient approximation of coherent pairs in non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3029-3042. doi: 10.3934/dcds.2012.32.3029

[2]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[3]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215

[4]

Benoît Saussol. Recurrence rate in rapidly mixing dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 259-267. doi: 10.3934/dcds.2006.15.259

[5]

Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727

[6]

David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96

[7]

Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020065

[8]

Ian Melbourne, Dalia Terhesiu. Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure. Journal of Modern Dynamics, 2018, 12: 285-313. doi: 10.3934/jmd.2018011

[9]

Marta Štefánková. Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3435-3443. doi: 10.3934/dcds.2016.36.3435

[10]

João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465

[11]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[12]

S.Durga Bhavani, K. Viswanath. A general approach to stability and sensitivity in dynamical systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 131-140. doi: 10.3934/dcds.1998.4.131

[13]

Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129

[14]

Matthew Macauley, Henning S. Mortveit. Update sequence stability in graph dynamical systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1533-1541. doi: 10.3934/dcdss.2011.4.1533

[15]

Jakub Šotola. Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5119-5128. doi: 10.3934/dcds.2018225

[16]

David Cheban. I. U. Bronshtein's conjecture for monotone nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1095-1113. doi: 10.3934/dcdsb.2019008

[17]

Yejuan Wang, Tomás Caraballo. Morse decomposition for gradient-like multi-valued autonomous and nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-24. doi: 10.3934/dcdss.2020092

[18]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[19]

Henri Schurz. Moment attractivity, stability and contractivity exponents of stochastic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 487-515. doi: 10.3934/dcds.2001.7.487

[20]

Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172

 Impact Factor: 

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (10)

[Back to Top]