Citation: |
[1] |
R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, volume 75 of Applied Mathematical Sciences, Springer-Verlag, 1988.doi: 10.1007/978-1-4612-1029-0. |
[2] |
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammerling and A. McKenney, et al, LAPACK Users' Guide, volume 9. Siam, 1999. |
[3] |
S. Bagheri, Effects of small noise on the DMD/Koopman spectrum, Bulletin Am. Phys. Soc., 58 (2013), p230. |
[4] |
S. Bagheri, Koopman-mode decomposition of the cylinder wake, Journal of Fluid Mechanics, 726 (2013), 596-623.doi: 10.1017/jfm.2013.249. |
[5] |
Z. Bai, T. Wimalajeewa, Z. Berger, G. Wang, M. Glauser and P. K. Varshney, Physics Based Compressive Sensing Approach Applied to Airfoil Data Collection and Analysis, AIAA Paper 2013-0772, 51st Aerospace Sciences Meeting, January 2013. |
[6] |
Z. Bai, T. Wimalajeewa, Z. Berger, G. Wang, M. Glauser and P. K. Varshney, Low-dimensional approach for reconstruction of airfoil data via compressive sensing, AIAA Journal, 53 (2015), 920-933.doi: 10.2514/1.J053287. |
[7] |
R. G. Baraniuk, Compressive sensing, IEEE Signal Processing Magazine, 24 (2007), 118-120. |
[8] |
R. G. Baraniuk, V. Cevher, M. F. Duarte and C. Hegde, Model-based compressive sensing, IEEE Transactions on Information Theory, 56 (2010), 1982-2001.doi: 10.1109/TIT.2010.2040894. |
[9] |
G. Berkooz, P. Holmes and J. L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Annual Review of Fluid Mechanics, 23 (1993), 539-575. |
[10] |
I. Bright, G. Lin and J. N. Kutz, Compressive sensing and machine learning strategies for characterizing the flow around a cylinder with limited pressure measurements, Physics of Fluids, 25 (2013), 127102.doi: 10.1063/1.4836815. |
[11] |
B. W. Brunton, S. L. Brunton, J. L. Proctor and J. N. Kutz, Optimal sensor placement and enhanced sparsity for classification, arXiv preprint arXiv:1310.4217, 2013. |
[12] |
B. W. Brunton, L. A. Johnson, J. G. Ojemann and J. N. Kutz, Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition, Journal of Neuroscience Methods, 258 (2016), 1-15.doi: 10.1016/j.jneumeth.2015.10.010. |
[13] |
S. L. Brunton and B. R. Noack, Closed-loop turbulence control: Progress and challenges, Applied Mechanics Reviews, 67 (2015), 050801.doi: 10.1115/1.4031175. |
[14] |
S. L. Brunton, J. L. Proctor and J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proceedings of the National Academy of Sciences, 113 (2016), 3932-3937.doi: 10.1073/pnas.1517384113. |
[15] |
S. L. Brunton, J. H. Tu, I. Bright and J. N. Kutz, Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems, SIAM Journal on Applied Dynamical Systems, 13 (2014), 1716-1732.doi: 10.1137/130949282. |
[16] |
M. Budišić, R. Mohr and I. Mezić, Applied Koopmanism a), Chaos: An Interdisciplinary Journal of Nonlinear Science, 22 (2012), 047510, 33pp.doi: 10.1063/1.4772195. |
[17] |
E. J. Candès, Compressive sensing, Proceedings of the International Congress of Mathematics, 3 (2006), 1433-1452. |
[18] |
E. J. Candès, J. Romberg and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52 (2006), 489-509.doi: 10.1109/TIT.2005.862083. |
[19] |
E. J. Candès, J. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Communications in Pure and Applied Mathematics, 59 (2016), 1207-1223.doi: 10.1002/cpa.20124. |
[20] |
E. J. Candès and T. Tao, Near optimal signal recovery from random projections: Universal encoding strategies?, IEEE Transactions on Information Theory, 52 (2006), 5406-5425.doi: 10.1109/TIT.2006.885507. |
[21] |
E. J. Candès and M. B. Wakin, An introduction to compressive sampling, IEEE Signal Processing Magazine, pages 21-30, 2008. |
[22] |
K. K. Chen, J. H. Tu and C. W. Rowley, Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses, Journal of Nonlinear Science, 22 (2012), 887-915.doi: 10.1007/s00332-012-9130-9. |
[23] |
S. Dawson, M. Hemati, M. Williams and C. Rowley, Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition, Experiments in Fluids, 57 (2016), p42, arXiv:1507.02264.doi: 10.1007/s00348-016-2127-7. |
[24] |
D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289-1306.doi: 10.1109/TIT.2006.871582. |
[25] |
J. E. Fowler, Compressive-projection principal component analysis, IEEE Transactions on Image Processing, 18 (2009), 2230-2242.doi: 10.1109/TIP.2009.2025089. |
[26] |
M. Gavish and D. L. Donoho, The optimal hard threshold for singular values is $4/\sqrt{3}$, IEEE Transactions on Information Theory, 60 (2014), 5040-5053.doi: 10.1109/TIT.2014.2323359. |
[27] |
A. C. Gilbert and P. Indyk, Sparse recovery using sparse matrices, Proceedings of the IEEE, 98 (2010), 937-947.doi: 10.1109/JPROC.2010.2045092. |
[28] |
A. C. Gilbert, J. Y. Park and M. B. Wakin, Sketched SVD: Recovering spectral features from compressive measurements. ArXiv e-prints, 2012. |
[29] |
J. Gosek and J. N. Kutz, Dynamic mode decomposition for real-time background/foreground separation in video, arXiv preprint, arXiv:1404.7592, 2014. |
[30] |
M. Grilli, P. J. Schmid, S. Hickel and N. A. Adams, Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction, Journal of Fluid Mechanics, 700 (2012), 16-28. |
[31] |
F. Gueniat, L. Mathelin and L. Pastur, A dynamic mode decomposition approach for large and arbitrarily sampled systems, Physics of Fluids, 27 (2015), 025113.doi: 10.1063/1.4908073. |
[32] |
Maziar S Hemati and Clarence W Rowley, De-biasing the dynamic mode decomposition for applied Koopman spectral analysis, arXiv preprint, arXiv:1502.03854, 2015. |
[33] |
B. L. Ho and R. E. Kalman, Effective construction of linear state-variable models from input/output data, In Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, (1965), 449-459. |
[34] |
P. J. Holmes, J. L. Lumley, G. Berkooz and C. W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs in Mechanics. Cambridge University Press, Cambridge, England, 2nd edition, 2012.doi: 10.1017/CBO9780511919701. |
[35] |
W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Contemporary mathematics, 26 (1984), 189-206.doi: 10.1090/conm/026/737400. |
[36] |
M. R. Jovanović, P. J. Schmid and J. W. Nichols, Low-rank and sparse dynamic mode decomposition, Center for Turbulence Research, 2012. |
[37] |
J. N. Juang and R. S. Pappa, An eigensystem realization algorithm for modal parameter identification and model reduction, Journal of Guidance, Control, and Dynamics, 8 (1985), 620-627.doi: 10.2514/3.20031. |
[38] |
I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis, Communications in Mathematical Science, 1 (2003), 715-762.doi: 10.4310/CMS.2003.v1.n4.a5. |
[39] |
B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proceedings of the National Academy of Sciences, 17 (1931), 315-318.doi: 10.1073/pnas.17.5.315. |
[40] |
J. N. Kutz, Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data, Oxford University Press, 2013. |
[41] |
J. N. Kutz, X. Fu and S. L. Brunton, Multi-resolution dynamic mode decomposition, SIAM Journal on Applied Dynamical Systems, 15 (2016), 713-735, Available: arXiv:1506.00564.doi: 10.1137/15M1023543. |
[42] |
J. L. Lumley, Stochastic Tools in Turbulence, Academic Press, 1970. |
[43] |
Z. Ma, S. Ahuja and C. W. Rowley, Reduced order models for control of fluids using the eigensystem realization algorithm, Theoretical and Computational Fluid Dynamics, 25 (2011), 233-247.doi: 10.1007/s00162-010-0184-8. |
[44] |
A. Mackey, H. Schaeffer and S. Osher, On the compressive spectral method, Multiscale Modeling & Simulation, 12 (2014), 1800-1827.doi: 10.1137/140965909. |
[45] |
I. Mezić, Analysis of fluid flows via spectral properties of the Koopman operator, Annual Review of Fluid Mechanics, 45 (2013), 357-378.doi: 10.1146/annurev-fluid-011212-140652. |
[46] |
I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear Dynamics, 41 (2005), 309-325.doi: 10.1007/s11071-005-2824-x. |
[47] |
D. Needell and J. A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples, Appl. Comput. Harmon. Anal., 26 (2009), 301-321.doi: 10.1016/j.acha.2008.07.002. |
[48] |
B. R. Noack, K. Afanasiev, M. Morzynski, G. Tadmor and F. Thiele, A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, Journal of Fluid Mechanics, 497 (2003), 335-363.doi: 10.1017/S0022112003006694. |
[49] |
H. Nyquist, Certain topics in telegraph transmission theory, Transactions of the A. I. E. E., (1928), 617-644. |
[50] |
V. M. Patel and R. Chellappa, Sparse Representations and Compressive Sensing for Imaging and Vision, Briefs in Electrical and Computer Engineering. Springer, 2013.doi: 10.1007/978-1-4614-6381-8. |
[51] |
C. Penland, Random forcing and forecasting using Principal Oscillation Pattern analysis, Mon. Weather Rev., 117 (1989), 2165-2185. |
[52] |
C. Penland and T. Magorian, Prediction of Niño 3 sea-surface temperatures using linear inverse modeling, J. Climate, 6 (1993), 1067-1076. |
[53] |
J. L. Proctor, S. L. Brunton and J. N. Kutz, Dynamic mode decomposition with control, SIAM Journal on Applied Dynamical Systems, 15 (2016), 142-161.doi: 10.1137/15M1013857. |
[54] |
H. Qi and S. M. Hughes, Invariance of principal components under low-dimensional random projection of the data, IEEE International Conference on Image Processing, (2012), 937-940.doi: 10.1109/ICIP.2012.6467015. |
[55] |
C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter and D. S. Henningson, Spectral analysis of nonlinear flows, Journal of Fluid Mechanics, 641 (2009), 115-127.doi: 10.1017/S0022112009992059. |
[56] |
A. C. Sankaranarayanan, P. K. Turaga, R. G. Baraniuk and R. Chellappa, Compressive acquisition of dynamic scenes, In Computer Vision-ECCV, (2010), 129-142. |
[57] |
S. Sargsyan, S. L. Brunton and J. N. Kutz, Nonlinear model reduction for dynamical systems using sparse sensor locations from learned libraries, Physical Review E, 92 (2015), 033304.doi: 10.1103/PhysRevE.92.033304. |
[58] |
H. Schaeffer, R. Caflisch, C. D. Hauck and S. Osher, Sparse dynamics for partial differential equations, Proceedings of the National Academy of Sciences USA, 110 (2013), 6634-6639.doi: 10.1073/pnas.1302752110. |
[59] |
P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, Journal of Fluid Mechanics, 656 (2010), 5-28.doi: 10.1017/S0022112010001217. |
[60] |
P. J. Schmid, Application of the dynamic mode decomposition to experimental data, Experiments in Fluids, 50 (2011), 1123-1130.doi: 10.1007/s00348-010-0911-3. |
[61] |
P. J. Schmid and J. Sesterhenn, Dynamic mode decomposition of numerical and experimental data, In 61st Annual Meeting of the APS Division of Fluid Dynamics, American Physical Society, November 2008. |
[62] |
P. J. Schmid, D. Violato and F. Scarano, Decomposition of time-resolved tomographic PIV, Experiments in Fluids, 52 (2012), 1567-1579.doi: 10.1007/s00348-012-1266-8. |
[63] |
C. E. Shannon, A mathematical theory of communication, Bell System Technical Journal, 27 (1948), 379-423.doi: 10.1002/j.1538-7305.1948.tb01338.x. |
[64] |
J. V. Shi, W. Yin, A. C. Sankaranarayanan and R. G. Baraniuk, Video compressive sensing for dynamic MRI, BMC Neuroscience, 13 (2012), p183.doi: 10.1186/1471-2202-13-S1-P183. |
[65] |
L. Sirovich, Turbulence and the dynamics of coherent structures, parts I-III, Q. Appl. Math., 45 (1987), 561-571. |
[66] |
T. H. Solomon and J. P. Gollub, Chaotic particle transport in time-dependent Rayleigh-Bénard convection, Physical Review A, 38 (1988), 6280-6286.doi: 10.1103/PhysRevA.38.6280. |
[67] |
G. Tissot, L. Cordier, N. Benard and B. R. Noack, Model reduction using dynamic mode decomposition, Comptes Rendus Mécanique, 342 (2014), 410-416.doi: 10.1016/j.crme.2013.12.011. |
[68] |
J. A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Transactions on Information Theory, 50 (2004), 2231-2242.doi: 10.1109/TIT.2004.834793. |
[69] |
J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg and R. G. Baraniuk, Beyond Nyquist: Efficient sampling of sparse bandlimited signals, IEEE Transactions on Information Theory, 56 (2010), 520-544.doi: 10.1109/TIT.2009.2034811. |
[70] |
J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton and J. N. Kutz, On dynamic mode decomposition: Theory and applications, Journal of Computational Dynamics, 1 (2014), 391-421.doi: 10.3934/jcd.2014.1.391. |
[71] |
J. H. Tu, C. W. Rowley, E. Aram and R. Mittal, Koopman spectral analysis of separated flow over a finite-thickness flat plate with elliptical leading edge, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, (2011), p2864.doi: 10.2514/6.2011-38. |
[72] |
J. H. Tu, C. W. Rowley, J. N. Kutz and J. K. Shang, Spectral analysis of fluid flows using sub-Nyquist rate PIV data, Experiments in Fluids, 55 (2014), p1805.doi: 10.1007/s00348-014-1805-6. |