\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the numerical approximation of the Perron-Frobenius and Koopman operator

Abstract / Introduction Related Papers Cited by
  • Information about the behavior of dynamical systems can often be obtained by analyzing the eigenvalues and corresponding eigenfunctions of linear operators associated with a dynamical system. Examples of such operators are the Perron-Frobenius and the Koopman operator. In this paper, we will review di erent methods that have been developed over the last decades to compute nite-dimensional approximations of these in nite-dimensional operators - in particular Ulam's method and Extended Dynamic Mode Decomposition (EDMD) - and highlight the similarities and di erences between these approaches. The results will be illustrated using simple stochastic di erential equations and molecular dynamics examples.
    Mathematics Subject Classification: Primary: 37M10, 37M25; Secondary: 34L16, 37L65, 37N25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. R. Baxter and J. S. Rosenthal, Rates of convergence for everywhere-positive Markov chains, Statistics & Probability Letters, 22 (1995), 333-338.doi: 10.1016/0167-7152(94)00085-M.

    [2]

    A. Bittracher, P. Koltai and O. Junge, Pseudogenerators of spatial transfer operators, SIAM Journal on Applied Dynamical Systems, 14 (2015), 1478-1517.doi: 10.1137/14099872X.

    [3]

    E. M. Bollt and N. Santitissadeekorn, Applied and Computational Measurable Dynamics, Society for Industrial and Applied Mathematics, 2013.doi: 10.1137/1.9781611972641.

    [4]

    C. J. Bose and R. Murray, The exact rate of approximation in Ulam's method, Discrete and Continuous Dynamical Systems, 7 (2001), 219-235.

    [5]

    C. J. Bose and R. Murray, Dynamical conditions for convergence of a maximum entropy method for Frobenius-Perron operator equations, Applied Mathematics and Computation, 182 (2006), 210-212.doi: 10.1016/j.amc.2006.01.089.

    [6]

    C. J. Bose and R. Murray, Minimum 'energy' approximations of invariant measures for nonsingular transformations, Discrete and Continuous Dynamical Systems, 14 (2006), 597-615.

    [7]

    C. J. Bose and R. Murray, Duality and the computation of approximate invariant densities for nonsingular transformations, SIAM Journal on Optimization, 18 (2007), 691-709.doi: 10.1137/060658163.

    [8]

    A. Boyarsky and P. Gora, Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension, Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1997.doi: 10.1007/978-1-4612-2024-4.

    [9]

    J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edition, Dover Publications, Inc., 2001.

    [10]

    M. Budišić, R. Mohr and I. Mezić, Applied Koopmanism, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22.

    [11]

    H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numerica, 13 (2004), 147-269.doi: 10.1017/S0962492904000182.

    [12]

    D. A. Case, J. T. Berryman, R. M. Betz, D. S. Cerutti, T. E. Cheatham, T. A. Darden, R. E. Duke, T. J. Giese, H. Gohlke, A. W. Goetz, N. Homeyer, S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T. S. Lee, S. LeGrand, P. Li, T. Luchko, R. Luo, B. Madej, K. M. Merz, G. Monard, P. Needham, H. Nguyen, H. T. Nguyen, I. Omelyan, A. Onufriev, D. R. Roe, A. Roitberg, R. Salomon-Ferrer, C. L. Simmerling, W. Smith, J. Swails, R. C. Walker, J. Wang, R. M. Wolf, X. Wu, D. M. York and P. A. Kollman, AMBER 2015, University of California, San Francisco, 2015.

    [13]

    M. D. Chekroun, J. D. Neelin, D. Kondrashov, J. C. McWilliams and M. Ghil, Rough parameter dependence in climate models and the role of Ruelle-Pollicott resonances, Proceedings of the National Academy of Sciences, 111 (2014), 1684-1690.doi: 10.1073/pnas.1321816111.

    [14]

    G. Chen and T. Ueta (eds.), Chaos in Circuits and Systems, World Scientific Series on Nonlinear Science, Series B, Volume 11, World Scientific, 2002.doi: 10.1142/9789812705303.

    [15]

    M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems, in Ergodic theory, analysis, and efficient simulation of dynamical systems, Springer, 2001, 145-174, 805-807.

    [16]

    M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior, SIAM Journal on Numerical Analysis, 36 (1999), 491-515.doi: 10.1137/S0036142996313002.

    [17]

    J. Ding, A maximum entropy method for solving Frobenius-Perron operator equations, Applied Mathematics and Computation, 93 (1998), 155-168.doi: 10.1016/S0096-3003(97)10061-3.

    [18]

    J. Ding, Q. Du and T.-Y. Li, High order approximation of the Frobenius-Perron operator, Applied Mathematics and Computation, 53 (1993), 151-171.doi: 10.1016/0096-3003(93)90099-Z.

    [19]

    J. Ding and T.-Y. Li, Markov finite approximation of the Frobenius-Perron operator, Nonlinear Analysis: Theory, Methods & Applications, 17 (1991), 759-772.doi: 10.1016/0362-546X(91)90211-I.

    [20]

    J. Ding and A. Zhou, Finite approximations of Frobenius-Perron operators. A solution of Ulam's conjucture on multi-dimensional transformations, Physica D, 92 (1996), 61-68.doi: 10.1016/0167-2789(95)00292-8.

    [21]

    H. Federer, Geometric Measure Theory, Springer New York, 1969.

    [22]

    G. Froyland, C. González-Tokman and T. M. Watson, Optimal mixing enhancement by local perturbation, Preprint.

    [23]

    G. Froyland, G. Gottwald and A. Hammerlindl, A computational method to extract macroscopic variables and their dynamics in multiscale systems, SIAM Journal on Applied Dynamical Systems, 13 (2014), 1816-1846.doi: 10.1137/130943637.

    [24]

    G. Froyland, R. M. Stuart and E. van Sebille, How well-connected is the surface of the global ocean?, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24 (2014), 033126, 10pp.doi: 10.1063/1.4892530.

    [25]

    G. Froyland, Approximating physical invariant measures of mixing dynamical systems, Nonlinear Analysis, Theory, Methods, & Applications, 32 (1998), 831-860.doi: 10.1016/S0362-546X(97)00527-0.

    [26]

    G. Froyland and O. Junge, On fast computation of finite-time coherent sets using radial basis functions, Chaos, 25 (2015), 087409, 11 pp.doi: 10.1063/1.4927640.

    [27]

    G. Froyland, O. Junge and P. Koltai, Estimating long term behavior of flows without trajectory integration: The infinitesimal generator approach, SIAM Journal on Numerical Analysis, 51 (2013), 223-247.doi: 10.1137/110819986.

    [28]

    P. R. Halmos, Lectures on Ergodic Theory, vol. 142, American Mathematical Soc., 1956.

    [29]

    E. Hopf, The general temporally discrete Markoff process, Journal of Rational Mechanics and Analysis, 3 (1954), 13-45.

    [30]

    P. Huber, Dünngitter-Spektralmethoden zur Approximation des Frobenius-Perron-Operators, Diploma thesis (in German), Technische Universität München, 2009.

    [31]

    M. R. Jovanović, P. J. Schmid and J. W. Nichols, Sparsity-promoting dynamic mode decomposition, Physics of Fluids, 26.

    [32]

    O. Junge and P. Koltai, Discretization of the Frobenius-Perron operator using a sparse Haar tensor basis: The Sparse Ulam method, SIAM Journal on Numerical Analysis, 47 (2009), 3464-3485.doi: 10.1137/080716864.

    [33]

    P. Koltai, Efficient Approximation Methods for the Global Long-Term Behavior of Dynamical Systems - Theory, Algorithms and Examples, PhD thesis, Technische Universität München, 2010.

    [34]

    B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proceedings of the National Academy of Sciences of the United States of America, 17 (1931), 315-318.doi: 10.1073/pnas.17.5.315.

    [35]

    U. Krengel, Ergodic Theorems, vol. 6 of de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 1985.doi: 10.1515/9783110844641.

    [36]

    A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, vol. 97 of Applied Mathematical Sciences, 2nd edition, Springer, 1994.doi: 10.1007/978-1-4612-4286-4.

    [37]

    T.-Y. Li, Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture, Journal of Approximation Theory, 17 (1976), 177-186.doi: 10.1016/0021-9045(76)90037-X.

    [38]

    J. C. Mattingly and A. M. Stuart, Geometric ergodicity of some hypo-elliptic diffusions for particle motions, Markov Process. Related Fields, 8 (2002), 199-214.

    [39]

    S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer Science & Business Media, 2012.

    [40]

    R. Murray, Discrete Approximation of Invariant Densities, PhD thesis, University of Cambridge, 1997.

    [41]

    R. Murray, Optimal partition choice for invariant measure approximation for one-dimensional maps, Nonlinearity, 17 (2004), 1623-1644.doi: 10.1088/0951-7715/17/5/004.

    [42]

    F. Noé and F. Nüske, A variational approach to modeling slow processes in stochastic dynamical systems, Multiscale Modeling & Simulation, 11 (2013), 635-655.doi: 10.1137/110858616.

    [43]

    F. Nüske, B. G. Keller, G. Pérez-Hernández, A. S. J. S. Mey and F. Noé, Variational approach to molecular kinetics, Journal of Chemical Theory and Computation, 10 (2014), 1739-1752.

    [44]

    F. Nüske, R. Schneider, F. Vitalini and F. Noé, Variational tensor approach for approximating the rare-event kinetics of macromolecular systems, The Journal of Chemical Physics, 144.

    [45]

    S. Ober-Blöbaum and K. Padberg-Gehle, Multiobjective optimal control of fluid mixing, PAMM, 15 (2015), 639-640.

    [46]

    D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Mathematics, 4 (1970), 337-352.doi: 10.1016/0001-8708(70)90029-0.

    [47]

    R. Preis, M. Dellnitz, M. Hessel, C. Schütte and E. Meerbach, Dominant Paths Between Almost Invariant Sets of Dynamical Systems, DFG Schwerpunktprogramm 1095, Technical Report 154, 2004.

    [48]

    P. Schmid and J. Sesterhenn, Dynamic mode decomposition of numerical and experimental data, in 61st Annual Meeting of the APS Division of Fluid Dynamics, American Physical Society, 2008.

    [49]

    Schrödinger, LLC, The PyMOL molecular graphics system, Version 1.7.4, 2014.

    [50]

    C. SchütteConformational Dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules, 1999, Habilitation Thesis.

    [51]

    C. Schütte and M. Sarich, Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches, no. 24 in Courant Lecture Notes, American Mathematical Society, 2013.

    [52]

    Y. G. Sinai, On the notion of entropy of dynamical systems, in Doklady Akademii Nauk, 124 (1959), 768-771.

    [53]

    A. Tantet, V. Lucarini, F. Lunkeit and H. A. Dijkstra, Crisis of the chaotic attractor of a climate model: A transfer operator approach, Preprint, arXiv:1507.02228.

    [54]

    A. Tantet, F. R. van der Burgt and H. A. Dijkstra, An early warning indicator for atmospheric blocking events using transfer operators, Chaos, 25 (2015), 036406.doi: 10.1063/1.4908174.

    [55]

    J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton and J. N. Kutz, On dynamic mode decomposition: Theory and applications, ArXiv e-prints.

    [56]

    S. M. Ulam, A Collection of Mathematical Problems, Interscience Publisher NY, 1960.

    [57]

    U. Vaidya, P. G. Mehta and U. V. Shanbhag, Nonlinear stabilization via control Lyapunov measure, IEEE Transactions on Automatic Control, 55 (2010), 1314-1328.doi: 10.1109/TAC.2010.2042226.

    [58]

    M. O. Williams, I. G. Kevrekidis and C. W. Rowley, A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition, J. Nonlinear Sci., 25 (2015), 1307-1346.doi: 10.1007/s00332-015-9258-5.

    [59]

    M. O. Williams, C. W. Rowley and I. G. Kevrekidis, A kernel-based approach to data-driven Koopman spectral analysis, J. Comput. Dyn., 2 (2015), 247-265.doi: 10.3934/jcd.2015005.

    [60]

    M. O. Williams, I. I. Rypina and C. W. Rowley, Identifying finite-time coherent sets from limited quantities of Lagrangian data, Chaos, 25 (2015), 087408, 13pp.doi: 10.1063/1.4927424.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(1482) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return