\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rigorous enclosures of rotation numbers by interval methods

Abstract / Introduction Related Papers Cited by
  • We apply set-valued numerical methods to compute an accurate enclosure of the rotation number. The described algorithm is supplemented with a method of proving the existence of periodic points, which is used to check the rationality of the rotation number. A few numerical experiments are presented to show that the implementation of interval methods produces a good enclosure of the rotation number of a circle map.
    Mathematics Subject Classification: Primary: 37E45, 37E10, 65G30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    CAPD, Computer assisted proofs in dynamics, a package for rigorous numerics. Available from: http://capd.ii.uj.edu.pl/.

    [2]

    H. Bruin, Numerical determination of the continued fraction expansion of the rotation number, Physica D: Nonlinear Phenomena, 59 (1992), 158-168.doi: 10.1016/0167-2789(92)90211-5.

    [3]

    M. J. Capiński and C. Simó, Computer assisted proof for normally hyperbolic invariant manifolds, Nonlinearity, 25 (2012), 1997-2026.doi: 10.1088/0951-7715/25/7/1997.

    [4]

    S. Das, Y. Saiki, E. Sander and J. A. Yorke, Quantitative quasiperiodicity, preprint, arXiv:1601.06051.

    [5]

    Z. Galias, Proving the existence of long periodic orbits in 1D maps using interval Newton method and backward shooting, Topology Appl., 124 (2002), 25-37.doi: 10.1016/S0166-8641(01)00227-9.

    [6]

    A. Luque and J. Villanueva, Computation of derivatives of the rotation number for parametric families of circle diffeomorphisms, Physica D: Nonlinear Phenomena, 237 (2008), 2599-2615.doi: 10.1016/j.physd.2008.03.047.

    [7]

    W. de Melo and S. van Strien, One-dimensional Dynamics, 25 Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer-Verlag, Berlin, 1993.doi: 10.1007/978-3-642-78043-1.

    [8]

    R. Moore, Interval Analysis, Prentice-Hall series in automatic computation, Prentice-Hall, 1966.

    [9]

    A. Neumaier, Interval Methods for Systems of Equations, 37. Encyclopedia of Mathematics and its Applications, Cambridge university press, 1990.

    [10]

    R. Pavani, A numerical approximation of the rotation number, Applied Mathematics and Computation, 73 (1995), 191-201.doi: 10.1016/0096-3003(94)00249-5.

    [11]

    H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (1ère partie), Journal de mathématiques pures et appliquées, 7 (1881), 375-422.

    [12]

    T. M. Seara and J. Villanueva, On the numerical computation of diophantine rotation numbers of analytic circle maps, Physica D: Nonlinear Phenomena, 217 (2006), 107-120.doi: 10.1016/j.physd.2006.03.013.

    [13]

    W. Tucker, Validated Numerics. A Short Introduction to Rigorous Computations, Princeton University Press, Princeton, NJ, 2011.

    [14]

    M. Van Veldhuizen, On the numerical approximation of the rotation number, Journal of Computational and Applied Mathematics, 21 (1988), 203-212.doi: 10.1016/0377-0427(88)90268-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(124) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return