Citation: |
[1] |
CAPD, Computer assisted proofs in dynamics, a package for rigorous numerics. Available from: http://capd.ii.uj.edu.pl/. |
[2] |
H. Bruin, Numerical determination of the continued fraction expansion of the rotation number, Physica D: Nonlinear Phenomena, 59 (1992), 158-168.doi: 10.1016/0167-2789(92)90211-5. |
[3] |
M. J. Capiński and C. Simó, Computer assisted proof for normally hyperbolic invariant manifolds, Nonlinearity, 25 (2012), 1997-2026.doi: 10.1088/0951-7715/25/7/1997. |
[4] |
S. Das, Y. Saiki, E. Sander and J. A. Yorke, Quantitative quasiperiodicity, preprint, arXiv:1601.06051. |
[5] |
Z. Galias, Proving the existence of long periodic orbits in 1D maps using interval Newton method and backward shooting, Topology Appl., 124 (2002), 25-37.doi: 10.1016/S0166-8641(01)00227-9. |
[6] |
A. Luque and J. Villanueva, Computation of derivatives of the rotation number for parametric families of circle diffeomorphisms, Physica D: Nonlinear Phenomena, 237 (2008), 2599-2615.doi: 10.1016/j.physd.2008.03.047. |
[7] |
W. de Melo and S. van Strien, One-dimensional Dynamics, 25 Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer-Verlag, Berlin, 1993.doi: 10.1007/978-3-642-78043-1. |
[8] |
R. Moore, Interval Analysis, Prentice-Hall series in automatic computation, Prentice-Hall, 1966. |
[9] |
A. Neumaier, Interval Methods for Systems of Equations, 37. Encyclopedia of Mathematics and its Applications, Cambridge university press, 1990. |
[10] |
R. Pavani, A numerical approximation of the rotation number, Applied Mathematics and Computation, 73 (1995), 191-201.doi: 10.1016/0096-3003(94)00249-5. |
[11] |
H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (1ère partie), Journal de mathématiques pures et appliquées, 7 (1881), 375-422. |
[12] |
T. M. Seara and J. Villanueva, On the numerical computation of diophantine rotation numbers of analytic circle maps, Physica D: Nonlinear Phenomena, 217 (2006), 107-120.doi: 10.1016/j.physd.2006.03.013. |
[13] |
W. Tucker, Validated Numerics. A Short Introduction to Rigorous Computations, Princeton University Press, Princeton, NJ, 2011. |
[14] |
M. Van Veldhuizen, On the numerical approximation of the rotation number, Journal of Computational and Applied Mathematics, 21 (1988), 203-212.doi: 10.1016/0377-0427(88)90268-3. |