[1]
|
V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, Grenoble, 16 (1966), 319-361.
doi: 10.5802/aif.233.
|
[2]
|
R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators, part Ⅰ: Grids with superconvergence, SIAM Journal on Numerical Analysis, 41 (2003), 2294-2312.
doi: 10.1137/S003614290139874X.
|
[3]
|
W. Bauer, Toward Goal-Oriented R-adaptive Models in Geophysical Fluid Dynamics using a Generalized Discretization Approach, Ph.D thesis, Department of Geosciences, University of Hamburg, 2013.
|
[4]
|
W. Bauer, M. Baumann, L. Scheck, A. Gassmann, V. Heuveline and S. C. Jones, Simulation of tropical-cyclone-like vortices in shallow-water icon-hex using goal-oriented r-adaptivity, Theoretical and Computational Fluid Dynamics, 28 (2014), 107-128.
doi: 10.1007/s00162-013-0303-4.
|
[5]
|
W. Bauer, A new hierarchically-structured $n$-dimensional covariant form of rotating equations of geophysical fluid dynamics, GEM - International Journal on Geomathematics, 7 (2016), 31-101.
doi: 10.1007/s13137-015-0074-8.
|
[6]
|
W. Bauer and F. Gay-Balmaz, Variational integrators for the anelastic and pseudo-incompressible flows, preprint, 2017, arXiv: 1701.06448.
|
[7]
|
A. M. Bloch, Nonholonomic Mechanics and Control, Volume 24 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 2003. With the collaboration of J. Baillieul, P. Crouch and J. E. Marsden, and with scientific input from P. S. Krishnaprasad, R. M. Murray and D. Zenkov.
doi: 10.1007/b97376.
|
[8]
|
N. Bou-Rabee and J. E. Marsden, Hamilton-Pontryagin integrators on Lie groups. Part Ⅰ: Introduction and structure-preserving properties, Foundations of Computational Mathematics, 9 (2009), 197-219.
doi: 10.1007/s10208-008-9030-4.
|
[9]
|
R. Brecht, W. Bauer, A. Bihlo, F. Gay-Balmaz and S. MacLachlan, Variational integrator for the rotating shallow-water equations on the sphere, preprint, 2018, arXiv: 1808.10507.
|
[10]
|
W. Cao, Superconvergence analysis of the linear finite element method and a gradient recovery postprocessing on anisotropic meshes, Math. Comput., 84 (2015), 89-117.
doi: 10.1090/S0025-5718-2014-02846-9.
|
[11]
|
M. J. P. Cullen, A Mathematical Theory of Large-scale Atmosphere/ocean Flow, Imperial College Press, London, 2006.
doi: 10.1142/p375.
|
[12]
|
F. Demoures, F. Gay-Balmaz and T. S. Ratiu, Multisymplectic variational integrators for nonsmooth Lagrangian continuum mechanics, Forum of Mathematics, Sigma, 4 (2016), e19, 54 pp.
doi: 10.1017/fms.2016.17.
|
[13]
|
F. Demoures, F. Gay-Balmaz, M. Kobilarov and T. S. Ratiu, Multisymplectic Lie group variational integrators for a geometrically exact beam in $ \mathbb{R} ^3 $, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 3492-3512.
doi: 10.1016/j.cnsns.2014.02.032.
|
[14]
|
M. Desbrun, E. Gawlik, F. Gay-Balmaz and V. Zeitlin, Variational discretization for rotating stratified fluids, Disc. Cont. Dyn. Syst. Series A, 34 (2014), 479-511.
doi: 10.3934/dcds.2014.34.477.
|
[15]
|
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer, 2004.
doi: 10.1007/978-1-4757-4355-5.
|
[16]
|
E. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden and M. Desbrun, Geometric, variational discretization of continuum theories, Physica D, 240 (2011), 1724-1760.
doi: 10.1016/j.physd.2011.07.011.
|
[17]
|
M. Giorgetta, T. Hundertmark, P. Korn, S. Reich and M. Restelli, Conservative space and time regularizations for the icon model, Technical report, Berichte zur Erdsystemforschung, Report 67, MPI for Meteorology, Hamburg, 2009.
|
[18]
|
F. Gay-Balmaz and V. Putkaradze, Variational discretizations for the dynamics of fluid-conveying flexible tubes, C. R. Mécanique, 344 (2016), 769-775.
doi: 10.1016/j.crme.2016.08.004.
|
[19]
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag, 2006.
|
[20]
|
D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721.
|
[21]
|
A. Lew, J. E. Marsden, M. Ortiz and M. West, Asynchronous variational integrators, Arch. Rat. Mech. Anal., 167 (2003), 85-146.
doi: 10.1007/s00205-002-0212-y.
|
[22]
|
Y. Huang and J. Xu, Superconvergence of quadratic finite elements on mildly structured grids, Mathematics of Computation, 77 (2008), 1253-1268.
doi: 10.1090/S0025-5718-08-02051-6.
|
[23]
|
R. J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm, J. Comput. Phys., 146 (1998), 346-365.
doi: 10.1006/jcph.1998.6058.
|
[24]
|
B. Liu, G. Mason, J. Hodgson, Y. Tong and M. Desbrun, Model-reduced variational fluid simulation, ACM Trans. Graph. (SIG Asia), 34 (2015), Art. 244.
doi: 10.1145/2816795.2818130.
|
[25]
|
J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.
doi: 10.1017/S096249290100006X.
|
[26]
|
J. E. Marsden, G. W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators and nonlinear PDEs, Comm. Math. Phys., 199 (1998), 351-395.
doi: 10.1007/s002200050505.
|
[27]
|
D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. E. Marsden and M. Desbrun, Structure-preserving discretization of incompressible fluids, Physica D, 240 (2010), 443-458.
doi: 10.1016/j.physd.2010.10.012.
|
[28]
|
J. Pedlosky, Geophysical Fluid Dynamics, Springer Verlag, New York, 1979.
|
[29]
|
S. Reich, Linearly implicit time stepping methods for numerical weather prediction, BIT Numerical Mathematics, 46 (2006), 607-616.
doi: 10.1007/s10543-006-0065-0.
|
[30]
|
S. Reich, N. Wood and A. Staniforth, Semi-implicit methods, nonlinear balance, and regularized equations, Atmospheric Science Letters, 8 (2007), 1-6.
doi: 10.1002/asl.142.
|
[31]
|
T. D. Ringler, J. Thuburn, J. B. Klemp and W. C. Skamarock, A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids, J. Comput. Phys., 229 (2010), 3065-3090.
doi: 10.1016/j.jcp.2009.12.007.
|
[32]
|
A. Staniforth and A. A. White, Some exact solutions of geophysical fluid-dynamics equations for testing models in spherical and plane geometry, Q. J. R. Meteorol. Soc., 133 (2007), 1605-1614.
doi: 10.1002/qj.122.
|
[33]
|
A. Staniforth, N. Wood and S. Reich, A time-staggered semi-lagrangian discretization of the rotating shallow-water equations, Quarterly Journal of the Royal Meteorological Society, 132 (2006), 3107-3116.
doi: 10.1256/qj.06.30.
|
[34]
|
A. Stegner and D. Dritschel, A numerical investigation of the stability of isolated shallow-water vortices, J. Phys. Ocean., 30 (2000), 2562-2573.
doi: 10.1175/1520-0485(2000)030<2562:ANIOTS>2.0.CO;2.
|
[35]
|
J. Thuburn, T. D. Ringler, W. C. Skamarock and J. B. Klemp, Numerical representation of geostrophic modes on arbitrarily structured C-grids, J. Comput. Phys., 228 (2009), 8321-8335.
doi: 10.1016/j.jcp.2009.08.006.
|
[36]
|
J. Thuburn and C. J. Cotter, A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes, Journal of Computational Physics, 290 (2015), 274-297.
doi: 10.1016/j.jcp.2015.02.045.
|
[37]
|
D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob and P. N. Swarztrauber, A standard test set for numerical approximations to the shallow-water equations in spherical geometry, J. Comput. Phys., 102 (1992), 221-224.
doi: 10.1016/S0021-9991(05)80016-6.
|
[38]
|
V. Zeitlin (Ed.), Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances, Elsevier, New York, 2007.
|