[1]
|
H. Babovsky, On a Monte Carlo scheme for Smoluchowski's coagulation equation, Monte Carlo Methods and Appl., 5 (1999), 1-18.
doi: 10.1515/mcma.1999.5.1.1.
|
[2]
|
K. V Beard, Terminal velocity and shape of cloud and precipitation drops aloft, J. Atmos. Sci., 33 (1976), 851-864.
doi: 10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.
|
[3]
|
A. Bott, A flux method for the numerical solution of the stochastic collection equation, J. Atmos. Sci., 55 (1998), 2284-2293.
doi: 10.1175/1520-0469(1998)055<2284:AFMFTN>2.0.CO;2.
|
[4]
|
J. H. Curtis, M. D. Michelotti, N. Riemer, M. Heath and M. West, Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models, J. Comput. Phys., 322 (2016), 21-32.
doi: 10.1016/j.jcp.2016.06.029.
|
[5]
|
M. H. A. Davis, Markov Models and Optimization, Chapman and Hall, Boundary Row, London, 1993.
doi: 10.1007/978-1-4899-4483-2.
|
[6]
|
E. Debry, B. Sportisse and B. Jourdain, A stochastic approach for the numerical simulation of the general dynamics equations for aerosols, J. Comput. Phys., 184 (2003), 649-669.
doi: 10.1016/S0021-9991(02)00041-4.
|
[7]
|
L. DeVille, N. Riemer and M. West, Weighted flow algorithms (WFA) for stochastic particle coagulation, J. Comput. Phys., 230 (2011), 8427-8451.
doi: 10.1016/j.jcp.2011.07.027.
|
[8]
|
J. L. Doob, Stochastic Processes, Wiley Classics Library. John Wiley & Sons Inc., New York, 1990. ISBN 0-471-52369-0. Reprint of the 1953 original, A Wiley-Interscience Publication.
|
[9]
|
Y. Efendiev and M. R. Zachariah, Hybrid Monte Carlo method for simulation of two-component aerosol coagulation and phase segregation, J. Colloid Interf. Sci., 249 (2002), 30-43.
doi: 10.1006/jcis.2001.8114.
|
[10]
|
Y. Efendiev, H. Struchtrup, M. Luskin and M. R. Zachariah, A hybrid sectional-moment model for coagulation and phase segregation in binary liquid nanodroplets, J. Nanopart. Res., 4 (2002), 61-72.
doi: 10.1023/A:1020122403428.
|
[11]
|
A. Eibeck and W. Wagner, An efficient stochastic algorithm for studying coagulation dynamics and gelation phenomena, SIAM J. Sci. Comput., 22 (2000), 802-821.
doi: 10.1137/S1064827599353488.
|
[12]
|
A. Eibeck and W. Wagner, Approximative solution of the coagulation-fragmentation equation by stochastic particle systems, Stochastic Anal. Appl., 18 (2000), 921-948.
doi: 10.1080/07362990008809704.
|
[13]
|
A. Eibeck and W. Wagner, Stochastic particle approximations for Smoluchoski's coagulation equation, Ann. Appl. Probab., 11 (2001), 1137-1165.
doi: 10.1214/aoap/1015345398.
|
[14]
|
A. Eibeck and W. Wagner, Stochastic interacting particle systems and nonlinear kinetic equations, Ann. Appl. Probab., 13 (2003), 845-889.
doi: 10.1214/aoap/1060202829.
|
[15]
|
D. T. Gillespie, The stochastic coalescence model for cloud droplet growth, J. Atmos. Sci., 29 (1972), 1496-1510.
doi: 10.1175/1520-0469(1972)029<1496:TSCMFC>2.0.CO;2.
|
[16]
|
D. T. Gillespie, An exact method for numerically simulating the stochastic coalescence process in a cloud, J. Atmos. Sci., 32 (1975), 1977-1989.
doi: 10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO;2.
|
[17]
|
D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22 (1976), 403-434.
doi: 10.1016/0021-9991(76)90041-3.
|
[18]
|
D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81 (1977), 2340-2361.
doi: 10.1021/j100540a008.
|
[19]
|
D. T. Gillespie, Markov Processes: An Introduction for Physical Scientists, Academic Press, 1992.
|
[20]
|
W. D. Hall, A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results, J. Atmos. Sci., 37 (1980), 2486-2507.
doi: 10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.
|
[21]
|
L. E. Hatch, J. M. Creamean, A. P. Ault, J. D. Surratt, M. N. Chan, J. H. Seinfeld, E. S. Edgerton, Y. Su and K. A. Prather, Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry-part 1: Single particle atmospheric observations in Atlanta, Environ. Sci. Technol., 45 (2011), 5105-5111.
doi: 10.1021/es103944a.
|
[22]
|
L. M. Hildemann, G. R. Markowski, M. C. Jones and G. R. Cass, Submicrometer aerosol mass distributions of emissions from boilers, fireplaces, automobiles, diesel trucks, and meat-cooking operations, Aerosol Sci. Technol., 14 (1991), 138-152.
doi: 10.1080/02786829108959478.
|
[23]
|
M. Hughes, J. K. Kodros, J. R. Pierce, M. West and N. Riemer, Machine learning to predict the global distribution of aerosol mixing state metrics, Atmosphere, 9 (2018), 15.
doi: 10.3390/atmos9010015.
|
[24]
|
R. Irizarry, Fast Monte Carlo methodology for multivariate particulate systems-Ⅰ: Point ensemble Monte Carlo, Chem. Eng. Sci., 63 (2008), 95-110.
doi: 10.1016/j.ces.2007.09.007.
|
[25]
|
R. Irizarry, Fast Monte Carlo methodology for multivariate particulate systems-Ⅱ: $\tau$-PEMC, Chem. Eng. Sci., 63 (2008), 111-121.
doi: 10.1016/j.ces.2007.09.006.
|
[26]
|
M. Z. Jacobson, Fundamentals of Atmospheric Modeling, Cambridge University Press, 2005.
doi: 10.1017/CBO9781139165389.
|
[27]
|
M. Z. Jacobson, R. P. Turco, E. J. Jensen and O. B. Toon, Modeling coagulation among particles of different composition and size, Atmos. Environ., 28 (1994), 1327-1338.
doi: 10.1016/1352-2310(94)90280-1.
|
[28]
|
A. Kolodko and K. Sabelfeld, Stochastic particle methods for Smoluchowski coagulation equation: Variance reduction and error estimations, Monte Carlo Methods Appl., 9 (2003), 315-339.
doi: 10.1515/156939603322601950.
|
[29]
|
A. B. Kostinski and R. A. Shaw, Fluctuations and luck in droplet growth by coalescence, Bull. Amer. Meteor. Soc., 86 (2005), 235-244.
doi: 10.1175/BAMS-86-2-235.
|
[30]
|
G. Kotalczyk and F. E. Kruis, A Monte Carlo method for the simulation of coagulation and nucleation based on weighted particles and the concepts of stochastic resolution and merging, J. Comput. Phys., 340 (2017), 276-296.
doi: 10.1016/j.jcp.2017.03.041.
|
[31]
|
T. G. Kurtz, Strong approximation theorems for density dependent Markov chains, Stochastic Processes Appl., 6 (1977/78), 223-240.
doi: 10.1016/0304-4149(78)90020-0.
|
[32]
|
A. Maisels, F. E. Kruis and H. Fissan, Direct simulation Monte Carlo for simultaneous nucleation, coagulation, and surface growth in dispersed systems, Chem. Eng. Sci., 59 (2004), 2231-2239.
doi: 10.1016/j.ces.2004.02.015.
|
[33]
|
R. McGraw and D. L. Wright, Chemically resolved aersol dynamics for internal mixtures by the quadrature method of moments, J. Aerosol Sci., 34 (2003), 189-209.
doi: 10.1016/S0021-8502(02)00157-X.
|
[34]
|
B. Øksendal, Stochastic Differential Equations, Universitext. Springer-Verlag, Berlin, sixth edition, 2003. ISBN 3-540-04758-1. An introduction with applications.
doi: 10.1007/978-3-642-14394-6.
|
[35]
|
R. I. A. Patterson, W. Wagner and M. Kraft, Stochastic weighted particle methods for population balance equations, J. Comput. Phys., 230 (2011), 7456-7472.
doi: 10.1016/j.jcp.2011.06.011.
|
[36]
|
A. Petzold, J. A. Ogren, M. Fiebig, P. Laj, S.-M. Li, U. Baltensperger, T. Holzer-Popp, S. Kinne, G. Pappalardo, N. Sugimoto and et al., Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13 (2013), 8365-8379.
doi: 10.5194/acp-13-8365-2013.
|
[37]
|
X. Qin, K. A. Pratt, L. G. Shields, S. M. Toner and K. A. Prather, Seasonal comparisons of single-particle chemical mixing state in Riverside, CA, Atmos. Environ., 59 (2012), 587-596.
doi: 10.1016/j.atmosenv.2012.05.032.
|
[38]
|
N. Riemer, H. Vogel, B. Vogel and F. Fiedler, Modeling aerosols on the mesoscale $\gamma$, part Ⅰ: Treatment of soot aerosol and its radiative effects, J. Geophys. Res., 108 (2003), 4601.
doi: 10.1029/2003JD003448.
|
[39]
|
N. Riemer, M. West, R. A. Zaveri and R. C. Easter, Simulating the evolution of soot mixing state with a particle-resolved aerosol model, J. Geophys. Res., (2009), D09202.
doi: 10.1029/2008JD011073.
|
[40]
|
J. H. Seinfeld and S. Pandis, Atmospheric Chemistry and Physics, Wiley, 2016.
|
[41]
|
S. Shima, K. Kusano, A. Kawano, T. Sugiyama and S. Kawahara, The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model, Q. J. R. Meteorol. Soc., 135 (2009), 1307-1320.
doi: 10.1002/qj.441.
|
[42]
|
A. Shwartz and A. Weiss, Large Deviations for Performance Analysis, Chapman & Hall, London, 1995.
|
[43]
|
J. Tian, N. Riemer, M. West, L. Pfaffenberger, H. Schlager and A. Petzold, Modeling the evolution of aerosol particles in a ship plume using PartMC-MOSAIC, Atmos. Chem. Phys., 14 (2014), 5327-5347.
doi: 10.5194/acp-14-5327-2014.
|
[44]
|
C. G. Wells and M. Kraft, Direct simulation and mass flow stochastic algorithms to solve a sintering-coagulation equation, Monte Carlo Methods Appl., 11 (2005), 175-197.
doi: 10.1515/156939605777585980.
|
[45]
|
M. West, N. Riemer, J. Curtis, M. Michelotti and J. Tian, PartMC: Particle-resolved Monte-Carlo atmospheric aerosol simulation, version 2.5.0, 2018.
doi: 10.5281/zenodo.1490925.
|
[46]
|
C. Yoon and R. McGraw, Representation of generally mixed multivariate aerosols by the quadrature method of moments: Ⅱ. Aerosol dynamics, J. Aerosol Sci., 35 (2004), 577-598.
doi: 10.1016/j.jaerosci.2003.11.012.
|
[47]
|
H. Zhao and C. Zheng, Correcting the Multi-Monte Carlo Method for particle coagulation, Powder Technol., 193 (2009), 120-123.
doi: 10.1016/j.powtec.2009.01.019.
|
[48]
|
H. Zhao, C. Zheng and M. Xu, Multi-Monte Carlo Method for coagulation and condensation/evaporation in dispersed systems, J. Colloid Interface Sci., 286 (2005), 195-208.
doi: 10.1016/j.jcis.2004.12.037.
|
[49]
|
H. Zhao, F. E. Kruis and C. Zheng, Reducing statistical noise and extending the size spectrum by applying weighted simulation particles in Monte Carlo simulation of coagulation, Aerosol Sci. Technol., 43 (2009), 781-793.
doi: 10.1080/02786820902939708.
|