June  2019, 6(1): 111-130. doi: 10.3934/jcd.2019005

Symplectic integration of PDEs using Clebsch variables

1. 

School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand

2. 

Department of Mathematical Sciences, Norwegian University of Science and Technology, Sentralbygg 2, Gløshaugen, Norway

Published  July 2019

Fund Project: This research was supported by the Marsden Fund of the Royal Society Te Apārangi.

Many PDEs (Burgers' equation, KdV, Camassa-Holm, Euler's fluid equations, …) can be formulated as infinite-dimensional Lie-Poisson systems. These are Hamiltonian systems on manifolds equipped with Poisson brackets. The Poisson structure is connected to conservation properties and other geometric features of solutions to the PDE and, therefore, of great interest for numerical integration. For the example of Burgers' equations and related PDEs we use Clebsch variables to lift the original system to a collective Hamiltonian system on a symplectic manifold whose structure is related to the original Lie-Poisson structure. On the collective Hamiltonian system a symplectic integrator can be applied. Our numerical examples show excellent conservation properties and indicate that the disadvantage of an increased phase-space dimension can be outweighed by the advantage of symplectic integration.

Citation: Robert I McLachlan, Christian Offen, Benjamin K Tapley. Symplectic integration of PDEs using Clebsch variables. Journal of Computational Dynamics, 2019, 6 (1) : 111-130. doi: 10.3934/jcd.2019005
References:
[1]

L. Brugnano, M. Calvo, J. Montijano and L. Rández, Energy-preserving methods for Poisson systems, Journal of Computational and Applied Mathematics, 236 (2012), 3890–3904, 40 years of numerical analysis: "Is the discrete world an approximation of the continuous one or is it the other way around". doi: 10.1016/j.cam.2012.02.033.  Google Scholar

[2]

A. Chern, F. Knöppel, U. Pinkall, P. Schröder and S. Weiẞmann, Schrödinger's smoke, ACM Transactions on Graphics (TOG), 35 (2016), 77. doi: 10.1145/2897824.2925868.  Google Scholar

[3]

D. Cohen and E. Hairer, Linear energy-preserving integrators for Poisson systems, BIT Numerical Mathematics, 51 (2011), 91-101.  doi: 10.1007/s10543-011-0310-z.  Google Scholar

[4]

M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 305205, 14pp. doi: 10.1088/1751-8113/44/30/305205.  Google Scholar

[5]

D. M. de Diego, Lie-Poisson integrators, preprint, arXiv: 1803.01427, URL https://arXiv.org/abs/1803.01427. Google Scholar

[6]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition. Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-30666-8.  Google Scholar

[7]

B. Khesin and R. Wendt, Infinite-dimensional lie groups: Their geometry, orbits, and dynamical systems, The Geometry of Infinite-Dimensional Groups, 2009, 47–153. doi: 10.1007/978-3-540-77263-7_2.  Google Scholar

[8]

A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis, vol. 53, AMS, 1997. doi: 10.1090/surv/053.  Google Scholar

[9]

E. Kuznetsov and A. Mikhailov, On the topological meaning of canonical Clebsch variables, Physics Letters A, 77 (1980), 37-38.  doi: 10.1016/0375-9601(80)90627-1.  Google Scholar

[10]

J. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1980), 305-323.  doi: 10.1016/0167-2789(83)90134-3.  Google Scholar

[11]

J. E. Marsden and R. Abraham, Foundations of Mechanics, 2nd edition, Addison-Wesley Publishing Co., Redwood City, CA., 1978, URL http://resolver.caltech.edu/CaltechBOOK:1987.001. Google Scholar

[12]

J. E. MarsdenS. Pekarsky and S. Shkoller, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity, 12 (1999), 1647-1662.  doi: 10.1088/0951-7715/12/6/314.  Google Scholar

[13]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Springer New York, New York, NY, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[14]

R. I. McLachlan, Spatial discretization of partial differential equations with integrals, IMA Journal of Numerical Analysis, 23 (2003), 645-664.  doi: 10.1093/imanum/23.4.645.  Google Scholar

[15]

R. I. McLachlanK. Modin and O. Verdier, Collective symplectic integrators, Nonlinearity, 27 (2014), 1525-1542.  doi: 10.1088/0951-7715/27/6/1525.  Google Scholar

[16]

I. Vaisman, Symplectic realizations of poisson manifolds, Lectures on the Geometry of Poisson Manifolds, 1994,115–133. doi: 10.1007/978-3-0348-8495-2_9.  Google Scholar

[17]

C. Vizman, Geodesic equations on diffeomorphism groups, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), Paper 030, 22 pp. doi: 10.3842/SIGMA.2008.030.  Google Scholar

show all references

References:
[1]

L. Brugnano, M. Calvo, J. Montijano and L. Rández, Energy-preserving methods for Poisson systems, Journal of Computational and Applied Mathematics, 236 (2012), 3890–3904, 40 years of numerical analysis: "Is the discrete world an approximation of the continuous one or is it the other way around". doi: 10.1016/j.cam.2012.02.033.  Google Scholar

[2]

A. Chern, F. Knöppel, U. Pinkall, P. Schröder and S. Weiẞmann, Schrödinger's smoke, ACM Transactions on Graphics (TOG), 35 (2016), 77. doi: 10.1145/2897824.2925868.  Google Scholar

[3]

D. Cohen and E. Hairer, Linear energy-preserving integrators for Poisson systems, BIT Numerical Mathematics, 51 (2011), 91-101.  doi: 10.1007/s10543-011-0310-z.  Google Scholar

[4]

M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 305205, 14pp. doi: 10.1088/1751-8113/44/30/305205.  Google Scholar

[5]

D. M. de Diego, Lie-Poisson integrators, preprint, arXiv: 1803.01427, URL https://arXiv.org/abs/1803.01427. Google Scholar

[6]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition. Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-30666-8.  Google Scholar

[7]

B. Khesin and R. Wendt, Infinite-dimensional lie groups: Their geometry, orbits, and dynamical systems, The Geometry of Infinite-Dimensional Groups, 2009, 47–153. doi: 10.1007/978-3-540-77263-7_2.  Google Scholar

[8]

A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis, vol. 53, AMS, 1997. doi: 10.1090/surv/053.  Google Scholar

[9]

E. Kuznetsov and A. Mikhailov, On the topological meaning of canonical Clebsch variables, Physics Letters A, 77 (1980), 37-38.  doi: 10.1016/0375-9601(80)90627-1.  Google Scholar

[10]

J. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1980), 305-323.  doi: 10.1016/0167-2789(83)90134-3.  Google Scholar

[11]

J. E. Marsden and R. Abraham, Foundations of Mechanics, 2nd edition, Addison-Wesley Publishing Co., Redwood City, CA., 1978, URL http://resolver.caltech.edu/CaltechBOOK:1987.001. Google Scholar

[12]

J. E. MarsdenS. Pekarsky and S. Shkoller, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity, 12 (1999), 1647-1662.  doi: 10.1088/0951-7715/12/6/314.  Google Scholar

[13]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Springer New York, New York, NY, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[14]

R. I. McLachlan, Spatial discretization of partial differential equations with integrals, IMA Journal of Numerical Analysis, 23 (2003), 645-664.  doi: 10.1093/imanum/23.4.645.  Google Scholar

[15]

R. I. McLachlanK. Modin and O. Verdier, Collective symplectic integrators, Nonlinearity, 27 (2014), 1525-1542.  doi: 10.1088/0951-7715/27/6/1525.  Google Scholar

[16]

I. Vaisman, Symplectic realizations of poisson manifolds, Lectures on the Geometry of Poisson Manifolds, 1994,115–133. doi: 10.1007/978-3-0348-8495-2_9.  Google Scholar

[17]

C. Vizman, Geodesic equations on diffeomorphism groups, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), Paper 030, 22 pp. doi: 10.3842/SIGMA.2008.030.  Google Scholar

Figure 1.  Uniform periodic grids on $ S^1 \cong \mathbb{R}/L\mathbb{Z} $, $ L>0 $
Figure 2.  Order-two convergence for the travelling wave solution of the extended Burgers' equation outlined in section 6.2. The plots correspond to the conventional solution (○) and the collective solution (△) and an order-two reference line (). The error is calculated after 512 timesteps, with $ L = 8 $, $ \Delta t = 2^{-14} $ and $ \Delta x = L/2^{k} $ for $ k = 1,2,3 $ and $ 4 $
Figure 3.  Inviscid Burgers' equation solutions of the conventional method () and collective method (). The grid parameters are $ n_x = 64 $, $ \Delta x = 0.125 $, $ L = 8 $ and $ \Delta t = 2^{-12} $. A shock forms at about $ t = 0.4 $
Figure 4.  The errors corresponding to the conventional () and collective () methods for the inviscid Burgers' equation and $ \mathcal{O}(t^2) $ reference lines ()
Figure 5.  Travelling wave solutions of the perturbed Burgers' equation (top row) and the positive Fourier modes (bottom row) at $ t = 109 $ (left column), $ t = 218 $ (middle column) and $ t = 437 $ (right column). The plots correspond to the conventional method (), collective method () and the exact travelling wave solution (). The grid parameters are $ n_x = 16 $, $ \Delta x = 0.5 $, $ L = 8 $ and $ \Delta t = 2^{-6} $
Figure 6.  The errors corresponding to the conventional () and collective () methods for the travelling wave experiment. The reference lines () are $ \mathcal{O}(t) $ in figures (a) and (b) and exponential in figure (c)
Figure 7.  Periodic bump solutions of the extended Burgers' equation (top row) and the positive Fourier modes (bottom row) at $ t = 10 $ (left column), $ t = 100 $ (middle column) and $ t = 1000 $ (right column). The plots correspond to the conventional method () and the collective method (). The grid parameters are $ n_x = 32 $, $ \Delta x = 0.25 $, $ L = 8 $ and $ \Delta t = 2^{-8} $
Figure 8.  The errors corresponding to the conventional () and collective () methods for the periodic bump example. The reference line () in figure (a) is $ \mathcal{O}(t) $
Table 1.  Overview of the setting
Continuous system Spatially discretised system
Collective Hamiltonian system on an infinite-dimensional symplectic vector space in Clebsch variables $ q_t = \frac{\delta \bar H}{\delta p}, \quad p_t = -\frac{\delta \bar H}{\delta q}. $ Exact solutions preserve the symplectic structure, the Hamiltonian $ \bar H=H\circ J $, all quantities related to the Casimirs of the original PDE and the fibres of the Clebsch map $ J(q,p)=u $. Canonical Hamiltonian ODEs in $ 2N $ variables $ \hat q_t = \nabla_{\hat p} \hat {\bar H}, \quad \hat p_t = - \nabla_{\hat q} \hat {\bar H}. $ The exact flow preserves the symplectic structure and the Hamiltonian $ \hat {\bar H} $. Time-integration with the midpoint rule is symplectic.
Original PDE, interpreted as a Lie-Poisson equation $ u_t = \mathrm{ad}^\ast_{\frac {\delta H}{\delta u}}u. $ Exact solutions preserve the Poisson structure, the Hamiltonian $ H $ and all Casimirs. Non-Hamiltonian ODEs in $ N $ variables $ \hat u_t = K(\hat u) \nabla_{\hat u} \hat H, \qquad K^T=-K. $ Exact solutions conserve $ \hat H $. Time-integration with the midpoint rule is not symplectic.
Continuous system Spatially discretised system
Collective Hamiltonian system on an infinite-dimensional symplectic vector space in Clebsch variables $ q_t = \frac{\delta \bar H}{\delta p}, \quad p_t = -\frac{\delta \bar H}{\delta q}. $ Exact solutions preserve the symplectic structure, the Hamiltonian $ \bar H=H\circ J $, all quantities related to the Casimirs of the original PDE and the fibres of the Clebsch map $ J(q,p)=u $. Canonical Hamiltonian ODEs in $ 2N $ variables $ \hat q_t = \nabla_{\hat p} \hat {\bar H}, \quad \hat p_t = - \nabla_{\hat q} \hat {\bar H}. $ The exact flow preserves the symplectic structure and the Hamiltonian $ \hat {\bar H} $. Time-integration with the midpoint rule is symplectic.
Original PDE, interpreted as a Lie-Poisson equation $ u_t = \mathrm{ad}^\ast_{\frac {\delta H}{\delta u}}u. $ Exact solutions preserve the Poisson structure, the Hamiltonian $ H $ and all Casimirs. Non-Hamiltonian ODEs in $ N $ variables $ \hat u_t = K(\hat u) \nabla_{\hat u} \hat H, \qquad K^T=-K. $ Exact solutions conserve $ \hat H $. Time-integration with the midpoint rule is not symplectic.
[1]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[2]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[3]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[4]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[5]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[6]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[7]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[8]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[9]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[10]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[11]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[12]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[14]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[15]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[16]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[17]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[18]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[19]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[20]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

 Impact Factor: 

Metrics

  • PDF downloads (108)
  • HTML views (618)
  • Cited by (0)

[Back to Top]