-
Previous Article
Competing for customers in a social network
- JDG Home
- This Issue
-
Next Article
Policy improvement for perfect information additive reward and additive transition stochastic games with discounted and average payoffs
Pure and Random strategies in differential game with incomplete informations
1. | CEREMADE, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75016 Paris, France |
2. | Laboratoire de Mathématiques de Bretagne Atlantique, CNRS-UMR 6205, Université de Brest, 6, avenue Victor Le Gorgeu, CS 93837, 29238 Brest cedex 3, France, France |
References:
[1] |
L. Ambrosio, Lecture Notes on Optimal Transport Problems, Mathematical Aspects of Evolving Interfaces,, CIME Summer School in Madeira, (1812).
doi: 10.1007/978-3-540-39189-0_1. |
[2] |
R. J. Aumann, Mixed and behavior strategies in infinite extensive games,, in Advances in Game Theory, (1964), 627.
|
[3] |
R. J. Aumann and M. B. Maschler, Repeated Games with Incomplete Information,, MIT Press, (1995).
|
[4] |
R. Buckdahn, P. Cardaliaguet and M. Quincampoix, Some recent aspects of differential game theory,, Dynamic Games Applications, 1 (2011), 74.
doi: 10.1007/s13235-010-0005-0. |
[5] |
R. Buckdahn, J. Li and M. Quincampoix, Value function of differential games without isaacs conditions. An approach with non-anticipative mixed strategies,, Internat. J. of Game Theory, 42 (2013), 989.
doi: 10.1007/s00182-012-0351-9. |
[6] |
P. Cardaliaguet, Differential games with asymmetric information,, SIAM J. Control Optim., 46 (2007), 816.
doi: 10.1137/060654396. |
[7] |
P. Cardaliaguet and M. Quincampoix, Deterministic differential games under probability knowledge of initial condition,, Int. Game Theory Rev., 10 (2008), 1.
doi: 10.1142/S021919890800173X. |
[8] |
P. Cardaliaguet and C. Rainer, Stochastic differential games with assymetric information,, Appl. Math. Optim., 59 (2009), 1.
doi: 10.1007/s00245-008-9042-0. |
[9] |
P. Cardaliaguet and C. Rainer, Games with incomplete information in continuous time and for continuous types,, Dyn. Games Appl., 2 (2012), 206.
doi: 10.1007/s13235-012-0043-x. |
[10] |
C. Dellacherie and P. A. Meyer, Probabilities and Potential,, North-Holland Mathematics Studies, (1978).
|
[11] |
J. F. Mertens, S. Sorin and S. Zamir, Repeated Games,, CORE Discussion Papers 9420, (9420).
doi: 10.1057/9780230226203.3424. |
[12] |
A. Pratelli, On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation,, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 1.
doi: 10.1016/j.anihpb.2005.12.001. |
[13] |
D. Schmeidler, Equilibrium points of nonatomic games,, Journal of Statistical Physics, 7 (1973), 295.
doi: 10.1007/BF01014905. |
[14] |
C. Villani, Topics in Optimal Transportation,, Graduate studies in Mathematics, (2003).
doi: 10.1007/b12016. |
show all references
References:
[1] |
L. Ambrosio, Lecture Notes on Optimal Transport Problems, Mathematical Aspects of Evolving Interfaces,, CIME Summer School in Madeira, (1812).
doi: 10.1007/978-3-540-39189-0_1. |
[2] |
R. J. Aumann, Mixed and behavior strategies in infinite extensive games,, in Advances in Game Theory, (1964), 627.
|
[3] |
R. J. Aumann and M. B. Maschler, Repeated Games with Incomplete Information,, MIT Press, (1995).
|
[4] |
R. Buckdahn, P. Cardaliaguet and M. Quincampoix, Some recent aspects of differential game theory,, Dynamic Games Applications, 1 (2011), 74.
doi: 10.1007/s13235-010-0005-0. |
[5] |
R. Buckdahn, J. Li and M. Quincampoix, Value function of differential games without isaacs conditions. An approach with non-anticipative mixed strategies,, Internat. J. of Game Theory, 42 (2013), 989.
doi: 10.1007/s00182-012-0351-9. |
[6] |
P. Cardaliaguet, Differential games with asymmetric information,, SIAM J. Control Optim., 46 (2007), 816.
doi: 10.1137/060654396. |
[7] |
P. Cardaliaguet and M. Quincampoix, Deterministic differential games under probability knowledge of initial condition,, Int. Game Theory Rev., 10 (2008), 1.
doi: 10.1142/S021919890800173X. |
[8] |
P. Cardaliaguet and C. Rainer, Stochastic differential games with assymetric information,, Appl. Math. Optim., 59 (2009), 1.
doi: 10.1007/s00245-008-9042-0. |
[9] |
P. Cardaliaguet and C. Rainer, Games with incomplete information in continuous time and for continuous types,, Dyn. Games Appl., 2 (2012), 206.
doi: 10.1007/s13235-012-0043-x. |
[10] |
C. Dellacherie and P. A. Meyer, Probabilities and Potential,, North-Holland Mathematics Studies, (1978).
|
[11] |
J. F. Mertens, S. Sorin and S. Zamir, Repeated Games,, CORE Discussion Papers 9420, (9420).
doi: 10.1057/9780230226203.3424. |
[12] |
A. Pratelli, On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation,, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 1.
doi: 10.1016/j.anihpb.2005.12.001. |
[13] |
D. Schmeidler, Equilibrium points of nonatomic games,, Journal of Statistical Physics, 7 (1973), 295.
doi: 10.1007/BF01014905. |
[14] |
C. Villani, Topics in Optimal Transportation,, Graduate studies in Mathematics, (2003).
doi: 10.1007/b12016. |
[1] |
Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004 |
[2] |
Wai-Ki Ching, Jia-Wen Gu, Harry Zheng. On correlated defaults and incomplete information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 889-908. doi: 10.3934/jimo.2020003 |
[3] |
Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2020033 |
[4] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[5] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[6] |
Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300 |
[7] |
Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049 |
[8] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[9] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[10] |
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040 |
[11] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
[12] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[13] |
Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020181 |
[14] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[15] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[16] |
Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021007 |
[17] |
Chuan Ding, Da-Hai Li. Angel capitalists exit decisions under information asymmetry: IPO or acquisitions. Journal of Industrial & Management Optimization, 2021, 17 (1) : 369-392. doi: 10.3934/jimo.2019116 |
[18] |
Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135 |
[19] |
Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107 |
[20] |
Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]