2014, 1(3): 377-409. doi: 10.3934/jdg.2014.1.377

Competing for customers in a social network

1. 

Center for Game Theory in Economics, Stony Brook University, Stony Brook, NY 11794-4384, United States

2. 

Opera Solutions-India, Floor 6, Express Trade Towers 1, Plot No. 15-16, Sector 16A, Noida 201 301, New Delhi, India

3. 

PSE-Univesité Paris 1, 112 Boulevard de l'Hôpital, 75013 Paris, France

Received  June 2012 Revised  October 2013 Published  July 2014

Customers' proclivities to buy products often depend heavily on who else is buying the same product. This gives rise to non-cooperative games in which firms sell to customers located in a ``social network''. Nash Equilibrium (NE) in pure strategies exist in general. In the quasi-linear case, NE are unique. If there are no a priori biases between customers and firms, there is a cut-off level above which high cost firms are blockaded at an NE, while the rest compete uniformly throughout the network. Otherwise firms could end up as regional monopolies.
    The connectivity of a customer is related to the money firms spend on him. This becomes particularly transparent when externalities are dominant: NE can be characterized in terms of the invariant measures on the recurrent classes of the Markov chain underlying the social network.
    When cost functions of firms are convex, instead of just linear, NE need no longer be unique as we show via an example. But uniqueness is restored if there is enough competition between firms or if their valuations of clients are anonymous.
    Finally we develop a general model of nonlinear externalities and show that existence of NE remains intact.
Citation: Pradeep Dubey, Rahul Garg, Bernard De Meyer. Competing for customers in a social network. Journal of Dynamics & Games, 2014, 1 (3) : 377-409. doi: 10.3934/jdg.2014.1.377
References:
[1]

A. Banerji and B. Dutta, Local network externalities and market segmentation,, International Journal of Industrial Organization, 27 (2009), 605. doi: 10.1016/j.ijindorg.2009.02.001.

[2]

F. Bloch and N. Quérou, Pricing in social network,, Games and Economic Behavior, 80 (2013), 243. doi: 10.1016/j.geb.2013.03.006.

[3]

P. Domingos and M. Richardson, Mining the network value of customers,, in Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2001), 57. doi: 10.1145/502512.502525.

[4]

J. L. Doob, Stochastic Processes,, John Wiley & Sons, (1953).

[5]

P. Dubey, R. Garg and B. De Meyer, Competing for customers in a social network: The quasi-linear Case,, in Internet and Network Economics: Second International Workshop, (4286), 162. doi: 10.1007/11944874_16.

[6]

J. Hartline, V. Mirrokni and M. Sundarajan, Optimal marketing strategies over social networks,, in Proceedings of WWW 2008, (2008), 189. doi: 10.1145/1367497.1367524.

[7]

M. Jackson, The economics of social networks,, in Proceedings of the 9th World Congress of the Econometric Society (eds. R. Blundell, (2005).

[8]

B. Julien, Competing in Network Industries: Divide and Conquer,, Mimeo, (2001).

[9]

D. Kempe, J. Kleinberg and E. Tardos, Maximizing the spread of influence through a social network,, in Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining, (2003), 137. doi: 10.1145/956755.956769.

[10]

C. N. Moore, Summability of series,, The American Mathematical Monthly, 39 (1932), 62. doi: 10.2307/2302048.

[11]

J. Nash, Equilibrium points in $n$-person games,, Proceedings of the National Academy of Science, 36 (1950), 48. doi: 10.1073/pnas.36.1.48.

[12]

M. Richardson and P. Domingos, Mining knowledge-sharing sites for viral marketing,, in Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2002), 61. doi: 10.1145/775056.775057.

[13]

P. Saaskilahti, Monopoly Pricing of Social Goods,, MPRA Paper 3526, (3526).

[14]

S. Sahi, A note on the resolvent of a nonnegative matrix and its applications,, Linear Algebra and Its Applications, 432 (2010), 2524. doi: 10.1016/j.laa.2009.11.004.

[15]

J. Scott, Social Network Analysis: A Handbook,, 2nd edition, (2000).

[16]

C. Shapiro and H. R. Varian, Information Rules: A Strategic Guide to the Network Economy,, Harvard Business School Press, (1998).

[17]

O. Shy, The Economics of Network Industries,, Cambridge University Press, (2001).

[18]

G. Tullock, Efficient rent-seeking,, in Toward a Theory of the Rent-Seeking Society (eds. J. M. Buchanan, (1980), 97.

show all references

References:
[1]

A. Banerji and B. Dutta, Local network externalities and market segmentation,, International Journal of Industrial Organization, 27 (2009), 605. doi: 10.1016/j.ijindorg.2009.02.001.

[2]

F. Bloch and N. Quérou, Pricing in social network,, Games and Economic Behavior, 80 (2013), 243. doi: 10.1016/j.geb.2013.03.006.

[3]

P. Domingos and M. Richardson, Mining the network value of customers,, in Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2001), 57. doi: 10.1145/502512.502525.

[4]

J. L. Doob, Stochastic Processes,, John Wiley & Sons, (1953).

[5]

P. Dubey, R. Garg and B. De Meyer, Competing for customers in a social network: The quasi-linear Case,, in Internet and Network Economics: Second International Workshop, (4286), 162. doi: 10.1007/11944874_16.

[6]

J. Hartline, V. Mirrokni and M. Sundarajan, Optimal marketing strategies over social networks,, in Proceedings of WWW 2008, (2008), 189. doi: 10.1145/1367497.1367524.

[7]

M. Jackson, The economics of social networks,, in Proceedings of the 9th World Congress of the Econometric Society (eds. R. Blundell, (2005).

[8]

B. Julien, Competing in Network Industries: Divide and Conquer,, Mimeo, (2001).

[9]

D. Kempe, J. Kleinberg and E. Tardos, Maximizing the spread of influence through a social network,, in Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining, (2003), 137. doi: 10.1145/956755.956769.

[10]

C. N. Moore, Summability of series,, The American Mathematical Monthly, 39 (1932), 62. doi: 10.2307/2302048.

[11]

J. Nash, Equilibrium points in $n$-person games,, Proceedings of the National Academy of Science, 36 (1950), 48. doi: 10.1073/pnas.36.1.48.

[12]

M. Richardson and P. Domingos, Mining knowledge-sharing sites for viral marketing,, in Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2002), 61. doi: 10.1145/775056.775057.

[13]

P. Saaskilahti, Monopoly Pricing of Social Goods,, MPRA Paper 3526, (3526).

[14]

S. Sahi, A note on the resolvent of a nonnegative matrix and its applications,, Linear Algebra and Its Applications, 432 (2010), 2524. doi: 10.1016/j.laa.2009.11.004.

[15]

J. Scott, Social Network Analysis: A Handbook,, 2nd edition, (2000).

[16]

C. Shapiro and H. R. Varian, Information Rules: A Strategic Guide to the Network Economy,, Harvard Business School Press, (1998).

[17]

O. Shy, The Economics of Network Industries,, Cambridge University Press, (2001).

[18]

G. Tullock, Efficient rent-seeking,, in Toward a Theory of the Rent-Seeking Society (eds. J. M. Buchanan, (1980), 97.

[1]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[2]

Filipe Martins, Alberto A. Pinto, Jorge Passamani Zubelli. Nash and social welfare impact in an international trade model. Journal of Dynamics & Games, 2017, 4 (2) : 149-173. doi: 10.3934/jdg.2017009

[3]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51

[4]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[5]

Gaidi Li, Jiating Shao, Dachuan Xu, Wen-Qing Xu. The warehouse-retailer network design game. Journal of Industrial & Management Optimization, 2015, 11 (1) : 291-305. doi: 10.3934/jimo.2015.11.291

[6]

Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics & Games, 2015, 2 (1) : 1-32. doi: 10.3934/jdg.2015.2.1

[7]

Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153

[8]

Rumi Ghosh, Kristina Lerman. Rethinking centrality: The role of dynamical processes in social network analysis. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1355-1372. doi: 10.3934/dcdsb.2014.19.1355

[9]

Moez Kallel, Maher Moakher, Anis Theljani. The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Problems & Imaging, 2015, 9 (3) : 853-874. doi: 10.3934/ipi.2015.9.853

[10]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics & Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[11]

Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial & Management Optimization, 2010, 6 (3) : 453-464. doi: 10.3934/jimo.2010.6.453

[12]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[13]

Mark Broom, Chris Cannings. Game theoretical modelling of a dynamically evolving network I: General target sequences. Journal of Dynamics & Games, 2017, 4 (4) : 285-318. doi: 10.3934/jdg.2017016

[14]

Xiaolin Xu, Xiaoqiang Cai. Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium. Journal of Industrial & Management Optimization, 2008, 4 (4) : 843-859. doi: 10.3934/jimo.2008.4.843

[15]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple dimensional BSDEs. Mathematical Control & Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[16]

Mei Ju Luo, Yi Zeng Chen. Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 1-15. doi: 10.3934/jimo.2016.12.1

[17]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1

[18]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[19]

Getachew K. Befekadu, Panos J. Antsaklis. On noncooperative $n$-player principal eigenvalue games. Journal of Dynamics & Games, 2015, 2 (1) : 51-63. doi: 10.3934/jdg.2015.2.51

[20]

Enrique R. Casares, Lucia A. Ruiz-Galindo, María Guadalupe García-Salazar. Transitional dynamics, externalities, optimal subsidy, and growth. Journal of Dynamics & Games, 2018, 5 (1) : 41-59. doi: 10.3934/jdg.2018005

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]