-
Previous Article
A prequential test for exchangeable theories
- JDG Home
- This Issue
-
Next Article
General limit value in dynamic programming
Local stability of strict equilibria under evolutionary game dynamics
1. | Department of Economics, University of Wisconsin, 1180 Observatory Drive, Madison, WI 53706, United States |
References:
[1] |
G. W. Brown and J. von Neumann, Solutions of games by differential equations,, in Contributions to the Theory of Games I, (1950), 73.
|
[2] |
R. Cressman, Local stability of smooth selection dynamics for normal form games,, Mathematical Social Sciences, 34 (1997), 1.
doi: 10.1016/S0165-4896(97)00009-7. |
[3] |
S. Demichelis and K. Ritzberger, From evolutionary to strategic stability,, Journal of Economic Theory, 113 (2003), 51.
doi: 10.1016/S0022-0531(03)00078-4. |
[4] |
D. Friedman, Evolutionary games in economics,, Econometrica, 59 (1991), 637.
doi: 10.2307/2938222. |
[5] |
J. Hofbauer, Stability for the Best Response Dynamics,, Unpublished manuscript, (1995). Google Scholar |
[6] |
J. Hofbauer, From Nash and Brown to Maynard Smith: Equilibria, dynamics, and ESS,, Selection, 1 (2000), 81. Google Scholar |
[7] |
J. Hofbauer and W. H. Sandholm, Stable games and their dynamics,, Journal of Economic Theory, 144 (2009), 1665.
doi: 10.1016/j.jet.2009.01.007. |
[8] |
J. Hofbauer, P. Schuster and K. Sigmund, A note on evolutionarily stable strategies and game dynamics,, Journal of Theoretical Biology, 81 (1979), 609.
doi: 10.1016/0022-5193(79)90058-4. |
[9] |
J. Hofbauer and K. Sigmund, Theory of Evolution and Dynamical Systems,, Cambridge University Press, ().
|
[10] |
E. Hopkins, A note on best response dynamics,, Games and Economic Behavior, 29 (1999), 138.
doi: 10.1006/game.1997.0636. |
[11] |
R. Lahkar and W. H. Sandholm, The projection dynamic and the geometry of population games,, Games and Economic Behavior, 64 (2008), 565.
doi: 10.1016/j.geb.2008.02.002. |
[12] |
J. Maynard Smith and G. R. Price, The logic of animal conflict,, Nature, 246 (1973), 15. Google Scholar |
[13] |
J. H. Nachbar, 'Evolutionary' selection dynamics in games: Convergence and limit properties,, International Journal of Game Theory, 19 (1990), 59.
doi: 10.1007/BF01753708. |
[14] |
L. Samuelson and J. Zhang, Evolutionary stability in asymmetric games,, Journal of Economic Theory, 57 (1992), 363.
doi: 10.1016/0022-0531(92)90041-F. |
[15] |
W. H. Sandholm, Potential games with continuous player sets,, Journal of Economic Theory, 97 (2001), 81.
doi: 10.1006/jeth.2000.2696. |
[16] |
W. H. Sandholm, Excess payoff dynamics and other well-behaved evolutionary dynamics,, Journal of Economic Theory, 124 (2005), 149.
doi: 10.1016/j.jet.2005.02.003. |
[17] |
W. H. Sandholm, Local stability under evolutionary game dynamics,, Theoretical Economics, 5 (2010), 27.
doi: 10.3982/TE505. |
[18] |
W. H. Sandholm, Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium,, Games, 1 (2010), 3.
doi: 10.3390/g1010003. |
[19] |
W. H. Sandholm, Population Games and Evolutionary Dynamics,, MIT Press, (2010).
|
[20] |
B. Skyrms, The Dynamics of Rational Deliberation,, Harvard University Press, (1990).
|
[21] |
M. J. Smith, The stability of a dynamic model of traffic assignment-an application of a method of Lyapunov,, Transportation Science, 18 (1984), 245.
doi: 10.1287/trsc.18.3.245. |
[22] |
J. M. Swinkels, Adjustment dynamics and rational play in games,, Games and Economic Behavior, 5 (1993), 455.
doi: 10.1006/game.1993.1025. |
[23] |
P. D. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics,, Mathematical Biosciences, 40 (1978), 145.
doi: 10.1016/0025-5564(78)90077-9. |
[24] |
J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995).
|
[25] |
J. W. Weibull, The mass action interpretation. Excerpt from 'The work of John Nash in game theory: Nobel Seminar, December 8, 1994'., Journal of Economic Theory, 69 (1996), 165. Google Scholar |
[26] |
E. C. Zeeman, Population dynamics from game theory,, in Global Theory of Dynamical Systems (eds. Z. Nitecki and C. Robinson) (Evanston, (1979), 472.
|
show all references
References:
[1] |
G. W. Brown and J. von Neumann, Solutions of games by differential equations,, in Contributions to the Theory of Games I, (1950), 73.
|
[2] |
R. Cressman, Local stability of smooth selection dynamics for normal form games,, Mathematical Social Sciences, 34 (1997), 1.
doi: 10.1016/S0165-4896(97)00009-7. |
[3] |
S. Demichelis and K. Ritzberger, From evolutionary to strategic stability,, Journal of Economic Theory, 113 (2003), 51.
doi: 10.1016/S0022-0531(03)00078-4. |
[4] |
D. Friedman, Evolutionary games in economics,, Econometrica, 59 (1991), 637.
doi: 10.2307/2938222. |
[5] |
J. Hofbauer, Stability for the Best Response Dynamics,, Unpublished manuscript, (1995). Google Scholar |
[6] |
J. Hofbauer, From Nash and Brown to Maynard Smith: Equilibria, dynamics, and ESS,, Selection, 1 (2000), 81. Google Scholar |
[7] |
J. Hofbauer and W. H. Sandholm, Stable games and their dynamics,, Journal of Economic Theory, 144 (2009), 1665.
doi: 10.1016/j.jet.2009.01.007. |
[8] |
J. Hofbauer, P. Schuster and K. Sigmund, A note on evolutionarily stable strategies and game dynamics,, Journal of Theoretical Biology, 81 (1979), 609.
doi: 10.1016/0022-5193(79)90058-4. |
[9] |
J. Hofbauer and K. Sigmund, Theory of Evolution and Dynamical Systems,, Cambridge University Press, ().
|
[10] |
E. Hopkins, A note on best response dynamics,, Games and Economic Behavior, 29 (1999), 138.
doi: 10.1006/game.1997.0636. |
[11] |
R. Lahkar and W. H. Sandholm, The projection dynamic and the geometry of population games,, Games and Economic Behavior, 64 (2008), 565.
doi: 10.1016/j.geb.2008.02.002. |
[12] |
J. Maynard Smith and G. R. Price, The logic of animal conflict,, Nature, 246 (1973), 15. Google Scholar |
[13] |
J. H. Nachbar, 'Evolutionary' selection dynamics in games: Convergence and limit properties,, International Journal of Game Theory, 19 (1990), 59.
doi: 10.1007/BF01753708. |
[14] |
L. Samuelson and J. Zhang, Evolutionary stability in asymmetric games,, Journal of Economic Theory, 57 (1992), 363.
doi: 10.1016/0022-0531(92)90041-F. |
[15] |
W. H. Sandholm, Potential games with continuous player sets,, Journal of Economic Theory, 97 (2001), 81.
doi: 10.1006/jeth.2000.2696. |
[16] |
W. H. Sandholm, Excess payoff dynamics and other well-behaved evolutionary dynamics,, Journal of Economic Theory, 124 (2005), 149.
doi: 10.1016/j.jet.2005.02.003. |
[17] |
W. H. Sandholm, Local stability under evolutionary game dynamics,, Theoretical Economics, 5 (2010), 27.
doi: 10.3982/TE505. |
[18] |
W. H. Sandholm, Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium,, Games, 1 (2010), 3.
doi: 10.3390/g1010003. |
[19] |
W. H. Sandholm, Population Games and Evolutionary Dynamics,, MIT Press, (2010).
|
[20] |
B. Skyrms, The Dynamics of Rational Deliberation,, Harvard University Press, (1990).
|
[21] |
M. J. Smith, The stability of a dynamic model of traffic assignment-an application of a method of Lyapunov,, Transportation Science, 18 (1984), 245.
doi: 10.1287/trsc.18.3.245. |
[22] |
J. M. Swinkels, Adjustment dynamics and rational play in games,, Games and Economic Behavior, 5 (1993), 455.
doi: 10.1006/game.1993.1025. |
[23] |
P. D. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics,, Mathematical Biosciences, 40 (1978), 145.
doi: 10.1016/0025-5564(78)90077-9. |
[24] |
J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995).
|
[25] |
J. W. Weibull, The mass action interpretation. Excerpt from 'The work of John Nash in game theory: Nobel Seminar, December 8, 1994'., Journal of Economic Theory, 69 (1996), 165. Google Scholar |
[26] |
E. C. Zeeman, Population dynamics from game theory,, in Global Theory of Dynamical Systems (eds. Z. Nitecki and C. Robinson) (Evanston, (1979), 472.
|
[1] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[2] |
Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021002 |
[3] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[4] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[5] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[6] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[7] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020426 |
[8] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[9] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[10] |
Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283 |
[11] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[12] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[13] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[14] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[15] |
Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061 |
[16] |
Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 |
[17] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[18] |
David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121 |
[19] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[20] |
Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021009 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]