July  2014, 1(3): 485-495. doi: 10.3934/jdg.2014.1.485

Local stability of strict equilibria under evolutionary game dynamics

1. 

Department of Economics, University of Wisconsin, 1180 Observatory Drive, Madison, WI 53706, United States

Received  November 2012 Revised  July 2013 Published  July 2014

We consider the stability of strict equilibrium under deterministic evolutionary game dynamics. We show that if the correlation between strategies' growth rates and payoffs is positive and bounded away from zero in a neighborhood of a strict equilibrium, then this equilibrium is locally stable.
Citation: William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics & Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485
References:
[1]

G. W. Brown and J. von Neumann, Solutions of games by differential equations,, in Contributions to the Theory of Games I, (1950), 73.   Google Scholar

[2]

R. Cressman, Local stability of smooth selection dynamics for normal form games,, Mathematical Social Sciences, 34 (1997), 1.  doi: 10.1016/S0165-4896(97)00009-7.  Google Scholar

[3]

S. Demichelis and K. Ritzberger, From evolutionary to strategic stability,, Journal of Economic Theory, 113 (2003), 51.  doi: 10.1016/S0022-0531(03)00078-4.  Google Scholar

[4]

D. Friedman, Evolutionary games in economics,, Econometrica, 59 (1991), 637.  doi: 10.2307/2938222.  Google Scholar

[5]

J. Hofbauer, Stability for the Best Response Dynamics,, Unpublished manuscript, (1995).   Google Scholar

[6]

J. Hofbauer, From Nash and Brown to Maynard Smith: Equilibria, dynamics, and ESS,, Selection, 1 (2000), 81.   Google Scholar

[7]

J. Hofbauer and W. H. Sandholm, Stable games and their dynamics,, Journal of Economic Theory, 144 (2009), 1665.  doi: 10.1016/j.jet.2009.01.007.  Google Scholar

[8]

J. Hofbauer, P. Schuster and K. Sigmund, A note on evolutionarily stable strategies and game dynamics,, Journal of Theoretical Biology, 81 (1979), 609.  doi: 10.1016/0022-5193(79)90058-4.  Google Scholar

[9]

J. Hofbauer and K. Sigmund, Theory of Evolution and Dynamical Systems,, Cambridge University Press, ().   Google Scholar

[10]

E. Hopkins, A note on best response dynamics,, Games and Economic Behavior, 29 (1999), 138.  doi: 10.1006/game.1997.0636.  Google Scholar

[11]

R. Lahkar and W. H. Sandholm, The projection dynamic and the geometry of population games,, Games and Economic Behavior, 64 (2008), 565.  doi: 10.1016/j.geb.2008.02.002.  Google Scholar

[12]

J. Maynard Smith and G. R. Price, The logic of animal conflict,, Nature, 246 (1973), 15.   Google Scholar

[13]

J. H. Nachbar, 'Evolutionary' selection dynamics in games: Convergence and limit properties,, International Journal of Game Theory, 19 (1990), 59.  doi: 10.1007/BF01753708.  Google Scholar

[14]

L. Samuelson and J. Zhang, Evolutionary stability in asymmetric games,, Journal of Economic Theory, 57 (1992), 363.  doi: 10.1016/0022-0531(92)90041-F.  Google Scholar

[15]

W. H. Sandholm, Potential games with continuous player sets,, Journal of Economic Theory, 97 (2001), 81.  doi: 10.1006/jeth.2000.2696.  Google Scholar

[16]

W. H. Sandholm, Excess payoff dynamics and other well-behaved evolutionary dynamics,, Journal of Economic Theory, 124 (2005), 149.  doi: 10.1016/j.jet.2005.02.003.  Google Scholar

[17]

W. H. Sandholm, Local stability under evolutionary game dynamics,, Theoretical Economics, 5 (2010), 27.  doi: 10.3982/TE505.  Google Scholar

[18]

W. H. Sandholm, Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium,, Games, 1 (2010), 3.  doi: 10.3390/g1010003.  Google Scholar

[19]

W. H. Sandholm, Population Games and Evolutionary Dynamics,, MIT Press, (2010).   Google Scholar

[20]

B. Skyrms, The Dynamics of Rational Deliberation,, Harvard University Press, (1990).   Google Scholar

[21]

M. J. Smith, The stability of a dynamic model of traffic assignment-an application of a method of Lyapunov,, Transportation Science, 18 (1984), 245.  doi: 10.1287/trsc.18.3.245.  Google Scholar

[22]

J. M. Swinkels, Adjustment dynamics and rational play in games,, Games and Economic Behavior, 5 (1993), 455.  doi: 10.1006/game.1993.1025.  Google Scholar

[23]

P. D. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics,, Mathematical Biosciences, 40 (1978), 145.  doi: 10.1016/0025-5564(78)90077-9.  Google Scholar

[24]

J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995).   Google Scholar

[25]

J. W. Weibull, The mass action interpretation. Excerpt from 'The work of John Nash in game theory: Nobel Seminar, December 8, 1994'., Journal of Economic Theory, 69 (1996), 165.   Google Scholar

[26]

E. C. Zeeman, Population dynamics from game theory,, in Global Theory of Dynamical Systems (eds. Z. Nitecki and C. Robinson) (Evanston, (1979), 472.   Google Scholar

show all references

References:
[1]

G. W. Brown and J. von Neumann, Solutions of games by differential equations,, in Contributions to the Theory of Games I, (1950), 73.   Google Scholar

[2]

R. Cressman, Local stability of smooth selection dynamics for normal form games,, Mathematical Social Sciences, 34 (1997), 1.  doi: 10.1016/S0165-4896(97)00009-7.  Google Scholar

[3]

S. Demichelis and K. Ritzberger, From evolutionary to strategic stability,, Journal of Economic Theory, 113 (2003), 51.  doi: 10.1016/S0022-0531(03)00078-4.  Google Scholar

[4]

D. Friedman, Evolutionary games in economics,, Econometrica, 59 (1991), 637.  doi: 10.2307/2938222.  Google Scholar

[5]

J. Hofbauer, Stability for the Best Response Dynamics,, Unpublished manuscript, (1995).   Google Scholar

[6]

J. Hofbauer, From Nash and Brown to Maynard Smith: Equilibria, dynamics, and ESS,, Selection, 1 (2000), 81.   Google Scholar

[7]

J. Hofbauer and W. H. Sandholm, Stable games and their dynamics,, Journal of Economic Theory, 144 (2009), 1665.  doi: 10.1016/j.jet.2009.01.007.  Google Scholar

[8]

J. Hofbauer, P. Schuster and K. Sigmund, A note on evolutionarily stable strategies and game dynamics,, Journal of Theoretical Biology, 81 (1979), 609.  doi: 10.1016/0022-5193(79)90058-4.  Google Scholar

[9]

J. Hofbauer and K. Sigmund, Theory of Evolution and Dynamical Systems,, Cambridge University Press, ().   Google Scholar

[10]

E. Hopkins, A note on best response dynamics,, Games and Economic Behavior, 29 (1999), 138.  doi: 10.1006/game.1997.0636.  Google Scholar

[11]

R. Lahkar and W. H. Sandholm, The projection dynamic and the geometry of population games,, Games and Economic Behavior, 64 (2008), 565.  doi: 10.1016/j.geb.2008.02.002.  Google Scholar

[12]

J. Maynard Smith and G. R. Price, The logic of animal conflict,, Nature, 246 (1973), 15.   Google Scholar

[13]

J. H. Nachbar, 'Evolutionary' selection dynamics in games: Convergence and limit properties,, International Journal of Game Theory, 19 (1990), 59.  doi: 10.1007/BF01753708.  Google Scholar

[14]

L. Samuelson and J. Zhang, Evolutionary stability in asymmetric games,, Journal of Economic Theory, 57 (1992), 363.  doi: 10.1016/0022-0531(92)90041-F.  Google Scholar

[15]

W. H. Sandholm, Potential games with continuous player sets,, Journal of Economic Theory, 97 (2001), 81.  doi: 10.1006/jeth.2000.2696.  Google Scholar

[16]

W. H. Sandholm, Excess payoff dynamics and other well-behaved evolutionary dynamics,, Journal of Economic Theory, 124 (2005), 149.  doi: 10.1016/j.jet.2005.02.003.  Google Scholar

[17]

W. H. Sandholm, Local stability under evolutionary game dynamics,, Theoretical Economics, 5 (2010), 27.  doi: 10.3982/TE505.  Google Scholar

[18]

W. H. Sandholm, Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium,, Games, 1 (2010), 3.  doi: 10.3390/g1010003.  Google Scholar

[19]

W. H. Sandholm, Population Games and Evolutionary Dynamics,, MIT Press, (2010).   Google Scholar

[20]

B. Skyrms, The Dynamics of Rational Deliberation,, Harvard University Press, (1990).   Google Scholar

[21]

M. J. Smith, The stability of a dynamic model of traffic assignment-an application of a method of Lyapunov,, Transportation Science, 18 (1984), 245.  doi: 10.1287/trsc.18.3.245.  Google Scholar

[22]

J. M. Swinkels, Adjustment dynamics and rational play in games,, Games and Economic Behavior, 5 (1993), 455.  doi: 10.1006/game.1993.1025.  Google Scholar

[23]

P. D. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics,, Mathematical Biosciences, 40 (1978), 145.  doi: 10.1016/0025-5564(78)90077-9.  Google Scholar

[24]

J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995).   Google Scholar

[25]

J. W. Weibull, The mass action interpretation. Excerpt from 'The work of John Nash in game theory: Nobel Seminar, December 8, 1994'., Journal of Economic Theory, 69 (1996), 165.   Google Scholar

[26]

E. C. Zeeman, Population dynamics from game theory,, in Global Theory of Dynamical Systems (eds. Z. Nitecki and C. Robinson) (Evanston, (1979), 472.   Google Scholar

[1]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[2]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[3]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[4]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[5]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[6]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[7]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[8]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[9]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[10]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[11]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[12]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[13]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[15]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[16]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[17]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[18]

David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121

[19]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[20]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

 Impact Factor: 

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]