January 2018, 5(1): 31-39. doi: 10.3934/jdg.2018004

A solution for discrete cost sharing problems with non rival consumption

1. 

Universidade de Vigo, Statistics and Operations Research Program; Vigo, Spain

2. 

UASLP, School of Economics; San Luis Potosí, SLP, Mexico

* Corresponding author: adnavarro@uvigo.es

Received  April 2017 Revised  September 2017 Published  January 2018

Fund Project: The authors acknowledge support from CONACyT grant 240229.

In this paper we show several results regarding to the classical cost sharing problem when each agent requires a set of services but they can share the benefits of one unit of each service, i.e. there is non rival consumption. Specifically, we show a characterized solution for this problem, mainly adapting the well-known axioms that characterize the Shapley value for TU-games into our context. Finally, we present some additional properties that the shown solution satisfy.

Citation: Adriana Navarro-Ramos, William Olvera-Lopez. A solution for discrete cost sharing problems with non rival consumption. Journal of Dynamics & Games, 2018, 5 (1) : 31-39. doi: 10.3934/jdg.2018004
References:
[1]

J. Macias-Ponce and W. Olvera-Lopez, A characterization of a solution based on prices for a discrete cost sharing problem, Economics Bulletin, 33 (2013), 1429-1437.

[2] M. MaschlerE. Solan and S. Zamir, Game Theory, 1 $^{st}$ edition, Cambridge University Press, 2013. doi: 10.1017/CBO9780511794216.
[3]

H. Moulin, On additive methods to share joint costs, The Japanese Economic Review, 46 (1995), 303-332. doi: 10.1111/j.1468-5876.1995.tb00024.x.

[4]

D. Samet and Y. Tauman, The determination of marginal cost prices under a set of axioms, Econometrica, 50 (1982), 895-909. doi: 10.2307/1912768.

[5]

L. S. Shapley, A value for n-person games, in Contributions to the Theory of Games. Annals of Mathematical Studies (eds. Kuhn, H. W. ; Tucker, A. W. ), Princeton University Press, 28 (1953), 307-317.

[6]

Y. Sprumont, On the discrete version of the Aumann-Shapley cost sharing method, Econometrica, 73 (2005), 1693-1712. doi: 10.1111/j.1468-0262.2005.00633.x.

show all references

References:
[1]

J. Macias-Ponce and W. Olvera-Lopez, A characterization of a solution based on prices for a discrete cost sharing problem, Economics Bulletin, 33 (2013), 1429-1437.

[2] M. MaschlerE. Solan and S. Zamir, Game Theory, 1 $^{st}$ edition, Cambridge University Press, 2013. doi: 10.1017/CBO9780511794216.
[3]

H. Moulin, On additive methods to share joint costs, The Japanese Economic Review, 46 (1995), 303-332. doi: 10.1111/j.1468-5876.1995.tb00024.x.

[4]

D. Samet and Y. Tauman, The determination of marginal cost prices under a set of axioms, Econometrica, 50 (1982), 895-909. doi: 10.2307/1912768.

[5]

L. S. Shapley, A value for n-person games, in Contributions to the Theory of Games. Annals of Mathematical Studies (eds. Kuhn, H. W. ; Tucker, A. W. ), Princeton University Press, 28 (1953), 307-317.

[6]

Y. Sprumont, On the discrete version of the Aumann-Shapley cost sharing method, Econometrica, 73 (2005), 1693-1712. doi: 10.1111/j.1468-0262.2005.00633.x.

[1]

Yan-An Hwang, Yu-Hsien Liao. Reduction and dynamic approach for the multi-choice Shapley value. Journal of Industrial & Management Optimization, 2013, 9 (4) : 885-892. doi: 10.3934/jimo.2013.9.885

[2]

Vincent Choudri, Mathiyazhgan Venkatachalam, Sethuraman Panayappan. Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1153-1172. doi: 10.3934/jimo.2016.12.1153

[3]

Andrei Korobeinikov. Global properties of a general predator-prey model with non-symmetric attack and consumption rate. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1095-1103. doi: 10.3934/dcdsb.2010.14.1095

[4]

Alain Bensoussan, Jens Frehse, Jens Vogelgesang. Systems of Bellman equations to stochastic differential games with non-compact coupling. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1375-1389. doi: 10.3934/dcds.2010.27.1375

[5]

Fabien Gensbittel, Miquel Oliu-Barton, Xavier Venel. Existence of the uniform value in zero-sum repeated games with a more informed controller. Journal of Dynamics & Games, 2014, 1 (3) : 411-445. doi: 10.3934/jdg.2014.1.411

[6]

Zuo Quan Xu, Fahuai Yi. An optimal consumption-investment model with constraint on consumption. Mathematical Control & Related Fields, 2016, 6 (3) : 517-534. doi: 10.3934/mcrf.2016014

[7]

Barbara Bianconi, Francesca Papalini. Non-autonomous boundary value problems on the real line. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 759-776. doi: 10.3934/dcds.2006.15.759

[8]

Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861

[9]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967

[10]

Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial & Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27

[11]

Weisheng Wu. Modified Schmidt games and non-dense forward orbits of partially hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3463-3481. doi: 10.3934/dcds.2016.36.3463

[12]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[13]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[14]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[15]

Levon Nurbekyan. One-dimensional, non-local, first-order stationary mean-field games with congestion: A Fourier approach. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 963-990. doi: 10.3934/dcdss.2018057

[16]

Nassif Ghoussoub. Superposition of selfdual functionals in non-homogeneous boundary value problems and differential systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 187-220. doi: 10.3934/dcds.2008.21.187

[17]

Alberto Cabada, J. Ángel Cid. Heteroclinic solutions for non-autonomous boundary value problems with singular $\Phi$-Laplacian operators. Conference Publications, 2009, 2009 (Special) : 118-122. doi: 10.3934/proc.2009.2009.118

[18]

Shenghao Li, Min Chen, Bing-Yu Zhang. A non-homogeneous boundary value problem of the sixth order Boussinesq equation in a quarter plane. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2505-2525. doi: 10.3934/dcds.2018104

[19]

Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155

[20]

Jong Soo Kim, Won Chan Jeong. A model for buyer and supplier coordination and information sharing in order-up-to systems. Journal of Industrial & Management Optimization, 2012, 8 (4) : 987-1015. doi: 10.3934/jimo.2012.8.987

 Impact Factor: 

Metrics

  • PDF downloads (27)
  • HTML views (242)
  • Cited by (0)

Other articles
by authors

[Back to Top]