[1]
|
T. Başar, On the uniqueness of the Nash solution in linear-quadratic differential games, Internat. J. Game Theory, 5 (1976), 65-90.
doi: 10.1007/BF01753310.
|
[2]
|
T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory, 2nd edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
|
[3]
|
M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser Boston, Inc., Boston, MA, 1997.
doi: 10.1007/978-0-8176-4755-1.
|
[4]
|
M. Breton, G. Zaccour and M. Zahaf, A differential game of joint implementation of environmental projects, Automatica J. IFAC, 41 (2005), 1737-1749.
doi: 10.1016/j.automatica.2005.05.004.
|
[5]
|
P. Chander and H. Tulkens, The core of an economy with multilateral environmental externalities, Internat. J. Game Theory, 26 (1997), 379-401.
doi: 10.1007/BF01263279.
|
[6]
|
J. A. Filar and P. S. Gaertner, A regional allocation of world CO2 emission reductions, Mathematics and Computers in Simulation, 43 (1997), 269-275.
doi: 10.1016/S0378-4754(97)00009-8.
|
[7]
|
G. Freiling, G. Jank and H. Abou-Kandil, On global existence of solutions to coupled matrix Riccati equations in closed-loop Nash games, IEEE Trans. Automat. Control, 41 (1996), 264-269.
doi: 10.1109/9.481532.
|
[8]
|
A. Friedman, Differential games, in Handbook of Game Theory with Economic Applications, Vol. 2, North-Holland, Amsterdam, 1994,781–799.
|
[9]
|
J. Greenberg, Coalition structures, in Handbook of Game Theory with Economic Applications, Vol. 2, North-Holland, Amsterdam, 1994, 1306–1337.
|
[10]
|
D. Gromov and E. Gromova, On a class of hybrid differential games, Dyn. Games Appl., 7 (2017), 266-288.
doi: 10.1007/s13235-016-0185-3.
|
[11]
|
E. Gromova, A. Malakhova and E. Marova, On the superadditivity of a characteristic function in cooperative differential games with negative externalities, in 2017 Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA), St. Petersburg, 2017, 1–4.
doi: 10.1109/CNSA.2017.7973963.
|
[12]
|
E. Gromova, The Shapley value as a sustainable cooperative solution in differential games of three players, in Recent Advances in Game Theory and Applications, Birkhäuser/Springer, Cham, 2016, 67–89.
|
[13]
|
E. V. Gromova and E. V. Marova, Coalition and anti-coalition interaction in cooperative differential games, IFAC-PapersOnLine, 51 (2018), 479-483.
doi: 10.1016/j.ifacol.2018.11.466.
|
[14]
|
E. V. Gromova and L. A. Petrosyan, On an approach to constructing a characteristic function in cooperative differential games, Autom. Remote Control, 78 (2017), 1680-1692.
doi: 10.1134/s0005117917090120.
|
[15]
|
J. Hajduková, Coalition formation games: A survey, Int. Game Theory Rev., 8 (2006), 613-641.
doi: 10.1142/S0219198906001144.
|
[16]
|
S. Hart, Shapley value, in Game Theory, Palgrave Macmillan, 1989,210–216.
|
[17]
|
A. Haurie and G. Zaccour, Differential game models of global environmental management, in Control and Game-Theoretic Models of the Environment, Vol. 2, Birkhäuser Boston, Boston, MA, 1995, 3–23.
doi: 10.1007/978-1-4612-0841-9_1.
|
[18]
|
C.-Y. Huang and T. Sjöström, The recursive core for non-superadditive games, Games, 1 (2010), 66-88.
doi: 10.3390/g1020066.
|
[19]
|
D. G. Hull, Optimal Control Theory for Applications, Springer-Verlag, New York, 2003.
doi: 10.1007/978-1-4757-4180-3.
|
[20]
|
S. Jørgensen and E. Gromova, Sustaining cooperation in a differential game of advertising goodwill accumulation, European J. Oper. Res., 254 (2016), 294-303.
doi: 10.1016/j.ejor.2016.03.029.
|
[21]
|
H. Moulin, Equal or proportional division of a surplus, and other methods, Internat. J. Game Theory, 16 (1987), 161-186.
doi: 10.1007/BF01756289.
|
[22]
|
M. J. Osborne and A. Rubinstein, A Course in Game Theory, MIT press, Cambridge, MA, 1994.
|
[23]
|
L. Petrosjan and G. Zaccour, Time-consistent Shapley value allocation of pollution cost reduction, J. Econom. Dynam. Control, 27 (2003), 381-398.
doi: 10.1016/S0165-1889(01)00053-7.
|
[24]
|
L. A. Petrosyan and N. N. Danilov, Stability of solutions in non-zero sum differential games with transferable payoffs, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 1 (1979), 52-59.
|
[25]
|
L. A. Petrosyan and E. V. Gromova, Two-level cooperation in coalitional differential games, Tr. Inst. Mat. Mekh., 20 (2014), 193-203.
|
[26]
|
P. V. Reddy and G. Zaccour, A friendly computable characteristic function, Math. Social Sci., 82 (2016), 18-25.
doi: 10.1016/j.mathsocsci.2016.03.008.
|
[27]
|
Alvin E. Roth (ed.), Introduction to the Shapley value, in The Shapley value: Essays in honor of Lloyd S. Shapley, Cambridge University Press, Cambridge, 1988.
doi: 10.1017/CBO9780511528446.002.
|
[28]
|
A. Sedakov, Characteristic functions in a linear oligopoly TU game, in Frontiers of Dynamic Games, Birkhäuser/Springer, Cham, 2018,219–235.
|
[29]
|
L. S. Shapley, A value for n-person games, Contributions to the Theory of Games, Vol. 2, Princeton University Press, Princeton, New Jersey, 1953,307-317.
|
[30]
|
J. Von Neumann and O. Morgenstern, Game Theory and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1944.
|
[31]
|
E. Winter, R. J. Aumann and S. Hart (eds.), The Shapley value, in Handbook of Game Theory with Economic Applications, Vol. 3, Elsevier/North-Holland, Amsterdam, 2002, 1521–2351.
|