2009, 1(1): 55-85. doi: 10.3934/jgm.2009.1.55

Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras


Institute of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF, United Kingdom


Dipartimento di Fisica, Università degli Studi Roma Tre and Sezione INFN, Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy

Received  October 2008 Published  April 2009

Recently Hirota and Kimura presented a new discretization of the Euler top with several remarkable properties. In particular this discretization shares with the original continuous system the feature that it is an algebraically completely integrable bi-Hamiltonian system in three dimensions. The Hirota-Kimura discretization scheme turns out to be equivalent to an approach to numerical integration of quadratic vector fields that was introduced by Kahan, who applied it to the two-dimensional Lotka-Volterra system.
   The Euler top is naturally written in terms of the $\mathfrak{so}(3)$ Lie-Poisson algebra. Here we consider algebraically integrable systems that are associated with pairs of Lie-Poisson algebras in three dimensions, as presented by Gümral and Nutku, and construct birational maps that discretize them according to the scheme of Kahan and Hirota-Kimura. We show that the maps thus obtained are also bi-Hamiltonian, with pairs of compatible Poisson brackets that are one-parameter deformations of the original Lie-Poisson algebras, and hence they are completely integrable. For comparison, we also present analogous discretizations for three bi-Hamiltonian systems that have a transcendental invariant, and finally we analyze all of the maps obtained from the viewpoint of Halburd's Diophantine integrability criterion.
Citation: Andrew N. W. Hone, Matteo Petrera. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. Journal of Geometric Mechanics, 2009, 1 (1) : 55-85. doi: 10.3934/jgm.2009.1.55

Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39


Aristophanes Dimakis, Folkert Müller-Hoissen. Bidifferential graded algebras and integrable systems. Conference Publications, 2009, 2009 (Special) : 208-219. doi: 10.3934/proc.2009.2009.208


Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121


Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167


M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.


Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485


Özlem Orhan, Teoman Özer. New conservation forms and Lie algebras of Ermakov-Pinney equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 735-746. doi: 10.3934/dcdss.2018046


Thierry Paul, David Sauzin. Normalization in Banach scale Lie algebras via mould calculus and applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4461-4487. doi: 10.3934/dcds.2017191


Francisco Crespo, Francisco Javier Molero, Sebastián Ferrer. Poisson and integrable systems through the Nambu bracket and its Jacobi multiplier. Journal of Geometric Mechanics, 2016, 8 (2) : 169-178. doi: 10.3934/jgm.2016002


Primitivo B. Acosta-Humánez, Martha Alvarez-Ramírez, David Blázquez-Sanz, Joaquín Delgado. Non-integrability criterium for normal variational equations around an integrable subsystem and an example: The Wilberforce spring-pendulum. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 965-986. doi: 10.3934/dcds.2013.33.965


A. A. Kirillov. Family algebras. Electronic Research Announcements, 2000, 6: 7-20.


Antonio Fernández, Pedro L. García. Regular discretizations in optimal control theory. Journal of Geometric Mechanics, 2013, 5 (4) : 415-432. doi: 10.3934/jgm.2013.5.415


Barnabas M. Garay, Keonhee Lee. Attractors under discretizations with variable stepsize. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 827-841. doi: 10.3934/dcds.2005.13.827


David DeLatte. Diophantine conditions for the linearization of commuting holomorphic functions. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 317-332. doi: 10.3934/dcds.1997.3.317


Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129


Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43


Hans Koch, João Lopes Dias. Renormalization of diophantine skew flows, with applications to the reducibility problem. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 477-500. doi: 10.3934/dcds.2008.21.477


E. Muñoz Garcia, R. Pérez-Marco. Diophantine conditions in small divisors and transcendental number theory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1401-1409. doi: 10.3934/dcds.2003.9.1401


Steffen Konig and Changchang Xi. Cellular algebras and quasi-hereditary algebras: a comparison. Electronic Research Announcements, 1999, 5: 71-75.


Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481

2017 Impact Factor: 0.561


  • PDF downloads (4)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]