# American Institute of Mathematical Sciences

March  2009, 1(1): 87-158. doi: 10.3934/jgm.2009.1.87

## Dirac cotangent bundle reduction

 1 Applied Mechanics and Aerospace Engineering, Waseda University, Okubo, Shinjuku, Tokyo 169-8555, Japan 2 Control and Dynamical Systems 107-81, California Institute of Technology, Pasadena, CA 91125, United States

Received  August 2008 Revised  March 2009 Published  April 2009

The authors' recent paper in Reports in Mathematical Physics develops Dirac reduction for cotangent bundles of Lie groups, which is called Lie--Dirac reduction . This procedure simultaneously includes Lagrangian, Hamiltonian, and a variational view of reduction. The goal of the present paper is to generalize Lie--Dirac reduction to the case of a general configuration manifold; we refer to this as Dirac cotangent bundle reduction . This reduction procedure encompasses, in particular, a reduction theory for Hamiltonian as well as implicit Lagrangian systems, including the case of degenerate Lagrangians.
First of all, we establish a reduction theory starting with the Hamilton-Pontryagin variational principle, which enables one to formulate an implicit analogue of the Lagrange-Poincaré equations. To do this, we assume that a Lie group acts freely and properly on a configuration manifold, in which case there is an associated principal bundle and we choose a principal connection. Then, we develop a reduction theory for the canonical Dirac structure on the cotangent bundle to induce a gauged Dirac structure . Second, it is shown that by making use of the gauged Dirac structure, one obtains a reduction procedure for standard implicit Lagrangian systems, which is called Lagrange-Poincaré-Dirac reduction . This procedure naturally induces the horizontal and vertical implicit Lagrange-Poincaré equations , which are consistent with those derived from the reduced Hamilton-Pontryagin principle. Further, we develop the case in which a Hamiltonian is given (perhaps, but not necessarily, coming from a regular Lagrangian); namely, Hamilton-Poincaré-Dirac reduction for the horizontal and vertical Hamilton-Poincaré equations . We illustrate the reduction procedures by an example of a satellite with a rotor.
The present work is done in a way that is consistent with, and may be viewed as a specialization of the larger context of Dirac reduction, which allows for Dirac reduction by stages . This is explored in a paper in preparation by Cendra, Marsden, Ratiu and Yoshimura.
Citation: Hiroaki Yoshimura, Jerrold E. Marsden. Dirac cotangent bundle reduction. Journal of Geometric Mechanics, 2009, 1 (1) : 87-158. doi: 10.3934/jgm.2009.1.87
 [1] Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399 [2] Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013 [3] Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39 [4] Hernán Cendra, Viviana A. Díaz. Lagrange-d'alembert-poincaré equations by several stages. Journal of Geometric Mechanics, 2018, 10 (1) : 1-41. doi: 10.3934/jgm.2018001 [5] Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421 [6] Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261 [7] Maria J. Esteban, Eric Séré. An overview on linear and nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 381-397. doi: 10.3934/dcds.2002.8.381 [8] Yvette Kosmann-Schwarzbach. Dirac pairs. Journal of Geometric Mechanics, 2012, 4 (2) : 165-180. doi: 10.3934/jgm.2012.4.165 [9] Xu Zhang. On the concentration of semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5389-5413. doi: 10.3934/dcds.2018238 [10] Xiaoyan Lin, Xianhua Tang. Solutions of nonlinear periodic Dirac equations with periodic potentials. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2051-2061. doi: 10.3934/dcdss.2019132 [11] Yu Chen, Yanheng Ding, Tian Xu. Potential well and multiplicity of solutions for nonlinear Dirac equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 587-607. doi: 10.3934/cpaa.2020028 [12] Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020297 [13] Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223 [14] Hassan Najafi Alishah. Conservative replicator and Lotka-Volterra equations in the context of Dirac\big-isotropic structures. Journal of Geometric Mechanics, 2020, 12 (2) : 149-164. doi: 10.3934/jgm.2020008 [15] Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67 [16] Ünver Çiftçi. Leibniz-Dirac structures and nonconservative systems with constraints. Journal of Geometric Mechanics, 2013, 5 (2) : 167-183. doi: 10.3934/jgm.2013.5.167 [17] Emanuel-Ciprian Cismas. Euler-Poincaré-Arnold equations on semi-direct products II. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5993-6022. doi: 10.3934/dcds.2016063 [18] V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901 [19] Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020173 [20] Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473

2019 Impact Factor: 0.649

## Metrics

• HTML views (0)
• Cited by (12)

• on AIMS