June  2011, 3(2): 197-223. doi: 10.3934/jgm.2011.3.197

Embedded geodesic problems and optimal control for matrix Lie groups

1. 

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States

2. 

Department of Electrical Engineering, University of Hawai‘i at Mānoa, Honolulu, HI 96822, United States

3. 

Department of Mechanical Engineering, University of Hawai‘i at Mānoa, Honolulu, HI 96822, United States

4. 

Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, United States

Received  July 2009 Revised  June 2011 Published  July 2011

This paper is devoted to a detailed analysis of the geodesic problem on matrix Lie groups, with left invariant metric, by examining representations of embeddings of geodesic flows in suitable vector spaces. We show how these representations generate extremals for optimal control problems. In particular we discuss in detail the symmetric representation of the so-called $n$-dimensional rigid body equation and its relation to the more classical Euler description. We detail invariant manifolds of these flows on which we are able to define a strict notion of equivalence between representations, and identify naturally induced symplectic structures.
Citation: Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist, Amit K. Sanyal. Embedded geodesic problems and optimal control for matrix Lie groups. Journal of Geometric Mechanics, 2011, 3 (2) : 197-223. doi: 10.3934/jgm.2011.3.197
References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics,", 2nd edition, (1978).   Google Scholar

[2]

V. I. Arnol'd, "Mathematical Methods of Classical Mechanics,", 2nd edition, 60 (1989).   Google Scholar

[3]

A. M. Bloch, J. Ballieul, P. E. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control,", number 24 in, (2003).   Google Scholar

[4]

A. M. Bloch, P. E. Crouch, D. D. Holm and J. E. Marsden, An optimal control formulation for inviscid incompressible ideal fluid flow,, In, (2000), 1273.   Google Scholar

[5]

A. M. Bloch, P. E. Crouch, J. E. Marsden and T. S. Ratiu, The symmetric representation of the rigid body equations and their discretization,, Nonlinearity, 15 (2002), 1309.  doi: 10.1088/0951-7715/15/4/316.  Google Scholar

[6]

A. M. Bloch, P. E. Crouch, J. E. Marsden and A. K. Sanyal, Optimal control and geodesics on quadratic matrix Lie groups,, Foundations of Computational Mathematics, 8 (2008), 469.  doi: 10.1007/s10208-008-9025-1.  Google Scholar

[7]

A. M. Bloch, P. E. Crouch and A. K. Sanyal, A variational problem on Stiefel manifolds,, Nonlinearity, 19 (2006), 2247.  doi: 10.1088/0951-7715/19/10/002.  Google Scholar

[8]

Y. N. Federov and V. V. Kozlov, Various aspects of n-dimensional rigid body dynamics,, in, 168 (1995), 141.   Google Scholar

[9]

F. Gay-Balmaz and T. S. Ratiu, Clebsch optimal control formulation in mechanics,, preprint., ().   Google Scholar

[10]

I. M. Gelfand and S. V. Fomin, "Calculus of Variations,", Prentice-Hall, (2000).   Google Scholar

[11]

D. D. Holm, Riemannian optimal control formulation of incompressible ideal fluid flow,, preprint., ().   Google Scholar

[12]

D. E. Kirk, "Optimal Control Theory: An Introduction,", Dover Publications, (2004).   Google Scholar

[13]

S. V. Manakov, Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body,, Functional Analysis and Its Applications, 10 (1976), 328.  doi: 10.1007/BF01076037.  Google Scholar

[14]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,", 2nd edition, 17 (1999).   Google Scholar

[15]

A. S. Mischenko and A. T. Fomenko, On the integration of the Euler equations on semisimple Lie algebras,, Sov. Math. Dokl., 17 (1976), 1591.   Google Scholar

[16]

T. S. Ratiu, The motion of the free n-dimensional rigid body,, Indiana University Mathematics Journal, 29 (1980), 609.  doi: 10.1512/iumj.1980.29.29046.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics,", 2nd edition, (1978).   Google Scholar

[2]

V. I. Arnol'd, "Mathematical Methods of Classical Mechanics,", 2nd edition, 60 (1989).   Google Scholar

[3]

A. M. Bloch, J. Ballieul, P. E. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control,", number 24 in, (2003).   Google Scholar

[4]

A. M. Bloch, P. E. Crouch, D. D. Holm and J. E. Marsden, An optimal control formulation for inviscid incompressible ideal fluid flow,, In, (2000), 1273.   Google Scholar

[5]

A. M. Bloch, P. E. Crouch, J. E. Marsden and T. S. Ratiu, The symmetric representation of the rigid body equations and their discretization,, Nonlinearity, 15 (2002), 1309.  doi: 10.1088/0951-7715/15/4/316.  Google Scholar

[6]

A. M. Bloch, P. E. Crouch, J. E. Marsden and A. K. Sanyal, Optimal control and geodesics on quadratic matrix Lie groups,, Foundations of Computational Mathematics, 8 (2008), 469.  doi: 10.1007/s10208-008-9025-1.  Google Scholar

[7]

A. M. Bloch, P. E. Crouch and A. K. Sanyal, A variational problem on Stiefel manifolds,, Nonlinearity, 19 (2006), 2247.  doi: 10.1088/0951-7715/19/10/002.  Google Scholar

[8]

Y. N. Federov and V. V. Kozlov, Various aspects of n-dimensional rigid body dynamics,, in, 168 (1995), 141.   Google Scholar

[9]

F. Gay-Balmaz and T. S. Ratiu, Clebsch optimal control formulation in mechanics,, preprint., ().   Google Scholar

[10]

I. M. Gelfand and S. V. Fomin, "Calculus of Variations,", Prentice-Hall, (2000).   Google Scholar

[11]

D. D. Holm, Riemannian optimal control formulation of incompressible ideal fluid flow,, preprint., ().   Google Scholar

[12]

D. E. Kirk, "Optimal Control Theory: An Introduction,", Dover Publications, (2004).   Google Scholar

[13]

S. V. Manakov, Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body,, Functional Analysis and Its Applications, 10 (1976), 328.  doi: 10.1007/BF01076037.  Google Scholar

[14]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,", 2nd edition, 17 (1999).   Google Scholar

[15]

A. S. Mischenko and A. T. Fomenko, On the integration of the Euler equations on semisimple Lie algebras,, Sov. Math. Dokl., 17 (1976), 1591.   Google Scholar

[16]

T. S. Ratiu, The motion of the free n-dimensional rigid body,, Indiana University Mathematics Journal, 29 (1980), 609.  doi: 10.1512/iumj.1980.29.29046.  Google Scholar

[1]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[2]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[3]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[4]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[5]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[6]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[7]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[8]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[9]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021005

[10]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[11]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[12]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[13]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[14]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[15]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[16]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[17]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[18]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[19]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[20]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (8)

[Back to Top]