-
Previous Article
Sub-Riemannian and sub-Lorentzian geometry on $SU(1,1)$ and on its universal cover
- JGM Home
- This Issue
-
Next Article
Lyapunov constraints and global asymptotic stabilization
Embedded geodesic problems and optimal control for matrix Lie groups
1. | Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States |
2. | Department of Electrical Engineering, University of Hawai‘i at Mānoa, Honolulu, HI 96822, United States |
3. | Department of Mechanical Engineering, University of Hawai‘i at Mānoa, Honolulu, HI 96822, United States |
4. | Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, United States |
References:
[1] |
R. Abraham and J. E. Marsden, "Foundations of Mechanics,", 2nd edition, (1978).
|
[2] |
V. I. Arnol'd, "Mathematical Methods of Classical Mechanics,", 2nd edition, 60 (1989).
|
[3] |
A. M. Bloch, J. Ballieul, P. E. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control,", number 24 in, (2003).
|
[4] |
A. M. Bloch, P. E. Crouch, D. D. Holm and J. E. Marsden, An optimal control formulation for inviscid incompressible ideal fluid flow,, In, (2000), 1273. Google Scholar |
[5] |
A. M. Bloch, P. E. Crouch, J. E. Marsden and T. S. Ratiu, The symmetric representation of the rigid body equations and their discretization,, Nonlinearity, 15 (2002), 1309.
doi: 10.1088/0951-7715/15/4/316. |
[6] |
A. M. Bloch, P. E. Crouch, J. E. Marsden and A. K. Sanyal, Optimal control and geodesics on quadratic matrix Lie groups,, Foundations of Computational Mathematics, 8 (2008), 469.
doi: 10.1007/s10208-008-9025-1. |
[7] |
A. M. Bloch, P. E. Crouch and A. K. Sanyal, A variational problem on Stiefel manifolds,, Nonlinearity, 19 (2006), 2247.
doi: 10.1088/0951-7715/19/10/002. |
[8] |
Y. N. Federov and V. V. Kozlov, Various aspects of n-dimensional rigid body dynamics,, in, 168 (1995), 141.
|
[9] |
F. Gay-Balmaz and T. S. Ratiu, Clebsch optimal control formulation in mechanics,, preprint., (). Google Scholar |
[10] |
I. M. Gelfand and S. V. Fomin, "Calculus of Variations,", Prentice-Hall, (2000).
|
[11] |
D. D. Holm, Riemannian optimal control formulation of incompressible ideal fluid flow,, preprint., (). Google Scholar |
[12] |
D. E. Kirk, "Optimal Control Theory: An Introduction,", Dover Publications, (2004). Google Scholar |
[13] |
S. V. Manakov, Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body,, Functional Analysis and Its Applications, 10 (1976), 328.
doi: 10.1007/BF01076037. |
[14] |
J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,", 2nd edition, 17 (1999).
|
[15] |
A. S. Mischenko and A. T. Fomenko, On the integration of the Euler equations on semisimple Lie algebras,, Sov. Math. Dokl., 17 (1976), 1591. Google Scholar |
[16] |
T. S. Ratiu, The motion of the free n-dimensional rigid body,, Indiana University Mathematics Journal, 29 (1980), 609.
doi: 10.1512/iumj.1980.29.29046. |
show all references
References:
[1] |
R. Abraham and J. E. Marsden, "Foundations of Mechanics,", 2nd edition, (1978).
|
[2] |
V. I. Arnol'd, "Mathematical Methods of Classical Mechanics,", 2nd edition, 60 (1989).
|
[3] |
A. M. Bloch, J. Ballieul, P. E. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control,", number 24 in, (2003).
|
[4] |
A. M. Bloch, P. E. Crouch, D. D. Holm and J. E. Marsden, An optimal control formulation for inviscid incompressible ideal fluid flow,, In, (2000), 1273. Google Scholar |
[5] |
A. M. Bloch, P. E. Crouch, J. E. Marsden and T. S. Ratiu, The symmetric representation of the rigid body equations and their discretization,, Nonlinearity, 15 (2002), 1309.
doi: 10.1088/0951-7715/15/4/316. |
[6] |
A. M. Bloch, P. E. Crouch, J. E. Marsden and A. K. Sanyal, Optimal control and geodesics on quadratic matrix Lie groups,, Foundations of Computational Mathematics, 8 (2008), 469.
doi: 10.1007/s10208-008-9025-1. |
[7] |
A. M. Bloch, P. E. Crouch and A. K. Sanyal, A variational problem on Stiefel manifolds,, Nonlinearity, 19 (2006), 2247.
doi: 10.1088/0951-7715/19/10/002. |
[8] |
Y. N. Federov and V. V. Kozlov, Various aspects of n-dimensional rigid body dynamics,, in, 168 (1995), 141.
|
[9] |
F. Gay-Balmaz and T. S. Ratiu, Clebsch optimal control formulation in mechanics,, preprint., (). Google Scholar |
[10] |
I. M. Gelfand and S. V. Fomin, "Calculus of Variations,", Prentice-Hall, (2000).
|
[11] |
D. D. Holm, Riemannian optimal control formulation of incompressible ideal fluid flow,, preprint., (). Google Scholar |
[12] |
D. E. Kirk, "Optimal Control Theory: An Introduction,", Dover Publications, (2004). Google Scholar |
[13] |
S. V. Manakov, Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body,, Functional Analysis and Its Applications, 10 (1976), 328.
doi: 10.1007/BF01076037. |
[14] |
J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,", 2nd edition, 17 (1999).
|
[15] |
A. S. Mischenko and A. T. Fomenko, On the integration of the Euler equations on semisimple Lie algebras,, Sov. Math. Dokl., 17 (1976), 1591. Google Scholar |
[16] |
T. S. Ratiu, The motion of the free n-dimensional rigid body,, Indiana University Mathematics Journal, 29 (1980), 609.
doi: 10.1512/iumj.1980.29.29046. |
[1] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[2] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[3] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[4] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[5] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[6] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[7] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[8] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[9] |
Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021005 |
[10] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[11] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[12] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[13] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[14] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[15] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[16] |
Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207 |
[17] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[18] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[19] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[20] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]