June  2013, 5(2): 167-183. doi: 10.3934/jgm.2013.5.167

Leibniz-Dirac structures and nonconservative systems with constraints

1. 

Department of Mathematics, Namik Kemal University, 59030 Tekirdaǧ, Turkey

Received  September 2012 Revised  April 2013 Published  July 2013

Although conservative Hamiltonian systems with constraints can be formulated in terms of Dirac structures, a more general framework is necessary to cover also dissipative systems such as gradient and metriplectic systems with constraints. We define Leibniz-Dirac structures which lead to a natural generalization of Dirac and Riemannian structures, for instance. From modeling point of view, Leibniz-Dirac structures make it easy to formulate implicit dissipative Hamiltonian systems. We give their exact characterization in terms of vector bundle maps from the tangent bundle to the cotangent bundle and vice verse. Physical systems which can be formulated in terms of Leibniz-Dirac structures are discussed.
Citation: Ünver Çiftçi. Leibniz-Dirac structures and nonconservative systems with constraints. Journal of Geometric Mechanics, 2013, 5 (2) : 167-183. doi: 10.3934/jgm.2013.5.167
References:
[1]

R. Abraham J. E. Marsden and T. Ratiu, "Manifolds, Tensor Analysis, and Applications,", Second edition, 75 (1988). doi: 10.1007/978-1-4612-1029-0. Google Scholar

[2]

P. Balseiro, M. de León, J. C. Marrero and D. Martín de Diego, The ubiquity of the symplectic Hamiltonian equations in mechanics,, J. Geom. Mech., 1 (2009), 1. doi: 10.3934/jgm.2009.1.1. Google Scholar

[3]

G. Blankenstein, A joined geometric structure for Hamiltonian and gradient control systems,, in, (2003), 51. Google Scholar

[4]

G. Blankenstein, Geometric modeling of nonlinear RLC circuits,, IEEE Trans. Circuits Syst. I Regul. Pap., 52 (2005), 396. doi: 10.1109/TCSI.2004.840481. Google Scholar

[5]

A. Bloch, P. S. Krishnaprasad, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and double bracket dissipation,, Comm. Math. Phys., 175 (1996), 1. doi: 10.1007/BF02101622. Google Scholar

[6]

F. Bullo and A. D. Lewis, "Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems,", Texts in Applied Mathematics, 49 (2005). Google Scholar

[7]

H. Bursztyn and O. Radko, Gauge equivalence of Dirac structures and symplectic groupoids,, Ann. Inst. Fourier (Grenoble), 53 (2003), 309. doi: 10.5802/aif.1945. Google Scholar

[8]

H. Bursztyn, G. R. Cavalcanti and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures,, Adv. Math., 211 (2007), 726. doi: 10.1016/j.aim.2006.09.008. Google Scholar

[9]

H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets,, J. Math. Phys., 47 (2006). doi: 10.1063/1.2165797. Google Scholar

[10]

P. E. Crouch, Geometric structures in systems theory,, Proceedings IEE-D, 128 (1981), 242. doi: 10.1049/ip-d.1981.0051. Google Scholar

[11]

T. J. Courant, Dirac manifolds,, Trans. Amer. Math. Soc., 319 (1990), 631. doi: 10.1090/S0002-9947-1990-0998124-1. Google Scholar

[12]

M. Dalsmo and A. van der Schaft, On representations and integrability of mathematical structures in energy-conserving physical systems,, SIAM J. Control Optim., 37 (1999), 54. doi: 10.1137/S0363012996312039. Google Scholar

[13]

J. Grabowski and P. Urbański, Lie algebroids and Poisson-Nijenhuis structures,, Rep. Math. Phys., 40 (1997), 195. doi: 10.1016/S0034-4877(97)85916-2. Google Scholar

[14]

J. Grabowski and P. Urbański, Algebroids-general differential calculi on vector bundles,, J. Geom. Phys., 31 (1999), 111. doi: 10.1016/S0393-0440(99)00007-8. Google Scholar

[15]

M. Gualtieri, Generalized complex geometry,, Ann. of Math. (2), 174 (2011), 75. doi: 10.4007/annals.2011.174.1.3. Google Scholar

[16]

M. Jotz and T. S. Ratiu, Dirac structures, nonholonomic systems and reduction,, Rep. Math. Phys., 69 (2012), 5. doi: 10.1016/S0034-4877(12)60016-0. Google Scholar

[17]

Z. Liu, A. Weinstein and P. Xu, Manin triples for Lie bialgebroids,, J. Differ. Geom., 45 (1997), 547. Google Scholar

[18]

P. J. Morrison, A paradigm for joined Hamiltonian and dissipative systems,, Phys. D, 18 (1986), 410. doi: 10.1016/0167-2789(86)90209-5. Google Scholar

[19]

S. Q. H. Nguyen and L. A. Turski, On the Dirac approach to constrained dissipative dynamics,, J. Phys. A, 34 (2001), 9281. doi: 10.1088/0305-4470/34/43/312. Google Scholar

[20]

J.-P. Ortega and V. Planas-Bielsa, Dynamics on Leibniz manifolds,, J. Geom. Phys., 52 (2004), 1. doi: 10.1016/j.geomphys.2004.01.002. Google Scholar

[21]

A. J. van der Schaft, Implicit Hamiltonian systems with symmetry,, Rep. Math. Phys., 41 (1998), 203. doi: 10.1016/S0034-4877(98)80176-6. Google Scholar

[22]

A. J. van der Schaft, "$L_2$-gain and Passivity Techniques in Nonlinear Control,", Second edition, (2000). doi: 10.1007/978-1-4471-0507-7. Google Scholar

[23]

A. J. van der Schaft and B. M. Maschke, Port-Hamiltonian systems on graphs,, SIAM J. Control Optim., 51 (2013), 906. doi: 10.1137/110840091. Google Scholar

show all references

References:
[1]

R. Abraham J. E. Marsden and T. Ratiu, "Manifolds, Tensor Analysis, and Applications,", Second edition, 75 (1988). doi: 10.1007/978-1-4612-1029-0. Google Scholar

[2]

P. Balseiro, M. de León, J. C. Marrero and D. Martín de Diego, The ubiquity of the symplectic Hamiltonian equations in mechanics,, J. Geom. Mech., 1 (2009), 1. doi: 10.3934/jgm.2009.1.1. Google Scholar

[3]

G. Blankenstein, A joined geometric structure for Hamiltonian and gradient control systems,, in, (2003), 51. Google Scholar

[4]

G. Blankenstein, Geometric modeling of nonlinear RLC circuits,, IEEE Trans. Circuits Syst. I Regul. Pap., 52 (2005), 396. doi: 10.1109/TCSI.2004.840481. Google Scholar

[5]

A. Bloch, P. S. Krishnaprasad, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and double bracket dissipation,, Comm. Math. Phys., 175 (1996), 1. doi: 10.1007/BF02101622. Google Scholar

[6]

F. Bullo and A. D. Lewis, "Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems,", Texts in Applied Mathematics, 49 (2005). Google Scholar

[7]

H. Bursztyn and O. Radko, Gauge equivalence of Dirac structures and symplectic groupoids,, Ann. Inst. Fourier (Grenoble), 53 (2003), 309. doi: 10.5802/aif.1945. Google Scholar

[8]

H. Bursztyn, G. R. Cavalcanti and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures,, Adv. Math., 211 (2007), 726. doi: 10.1016/j.aim.2006.09.008. Google Scholar

[9]

H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets,, J. Math. Phys., 47 (2006). doi: 10.1063/1.2165797. Google Scholar

[10]

P. E. Crouch, Geometric structures in systems theory,, Proceedings IEE-D, 128 (1981), 242. doi: 10.1049/ip-d.1981.0051. Google Scholar

[11]

T. J. Courant, Dirac manifolds,, Trans. Amer. Math. Soc., 319 (1990), 631. doi: 10.1090/S0002-9947-1990-0998124-1. Google Scholar

[12]

M. Dalsmo and A. van der Schaft, On representations and integrability of mathematical structures in energy-conserving physical systems,, SIAM J. Control Optim., 37 (1999), 54. doi: 10.1137/S0363012996312039. Google Scholar

[13]

J. Grabowski and P. Urbański, Lie algebroids and Poisson-Nijenhuis structures,, Rep. Math. Phys., 40 (1997), 195. doi: 10.1016/S0034-4877(97)85916-2. Google Scholar

[14]

J. Grabowski and P. Urbański, Algebroids-general differential calculi on vector bundles,, J. Geom. Phys., 31 (1999), 111. doi: 10.1016/S0393-0440(99)00007-8. Google Scholar

[15]

M. Gualtieri, Generalized complex geometry,, Ann. of Math. (2), 174 (2011), 75. doi: 10.4007/annals.2011.174.1.3. Google Scholar

[16]

M. Jotz and T. S. Ratiu, Dirac structures, nonholonomic systems and reduction,, Rep. Math. Phys., 69 (2012), 5. doi: 10.1016/S0034-4877(12)60016-0. Google Scholar

[17]

Z. Liu, A. Weinstein and P. Xu, Manin triples for Lie bialgebroids,, J. Differ. Geom., 45 (1997), 547. Google Scholar

[18]

P. J. Morrison, A paradigm for joined Hamiltonian and dissipative systems,, Phys. D, 18 (1986), 410. doi: 10.1016/0167-2789(86)90209-5. Google Scholar

[19]

S. Q. H. Nguyen and L. A. Turski, On the Dirac approach to constrained dissipative dynamics,, J. Phys. A, 34 (2001), 9281. doi: 10.1088/0305-4470/34/43/312. Google Scholar

[20]

J.-P. Ortega and V. Planas-Bielsa, Dynamics on Leibniz manifolds,, J. Geom. Phys., 52 (2004), 1. doi: 10.1016/j.geomphys.2004.01.002. Google Scholar

[21]

A. J. van der Schaft, Implicit Hamiltonian systems with symmetry,, Rep. Math. Phys., 41 (1998), 203. doi: 10.1016/S0034-4877(98)80176-6. Google Scholar

[22]

A. J. van der Schaft, "$L_2$-gain and Passivity Techniques in Nonlinear Control,", Second edition, (2000). doi: 10.1007/978-1-4471-0507-7. Google Scholar

[23]

A. J. van der Schaft and B. M. Maschke, Port-Hamiltonian systems on graphs,, SIAM J. Control Optim., 51 (2013), 906. doi: 10.1137/110840091. Google Scholar

[1]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[2]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[3]

Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097

[4]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[5]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[6]

Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems. Journal of Geometric Mechanics, 2014, 6 (2) : 167-236. doi: 10.3934/jgm.2014.6.167

[7]

Delio Mugnolo, René Pröpper. Gradient systems on networks. Conference Publications, 2011, 2011 (Special) : 1078-1090. doi: 10.3934/proc.2011.2011.1078

[8]

Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201

[9]

Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855

[10]

Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1

[11]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

[12]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[13]

Siniša Slijepčević. Extended gradient systems: Dimension one. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 503-518. doi: 10.3934/dcds.2000.6.503

[14]

Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii, Qingwen Hu. Selective Pyragas control of Hamiltonian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2019-2034. doi: 10.3934/dcdss.2019130

[15]

Kais Ammari, Eduard Feireisl, Serge Nicaise. Polynomial stabilization of some dissipative hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4371-4388. doi: 10.3934/dcds.2014.34.4371

[16]

Giuseppe Da Prato. Transition semigroups corresponding to Lipschitz dissipative systems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 177-192. doi: 10.3934/dcds.2004.10.177

[17]

Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889

[18]

Jin Zhang, Yonghai Wang, Chengkui Zhong. Robustness of exponentially κ-dissipative dynamical systems with perturbations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3875-3890. doi: 10.3934/dcdsb.2017198

[19]

Mostafa Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont, Olivier Goubet. Discrete Schrödinger equations and dissipative dynamical systems. Communications on Pure & Applied Analysis, 2008, 7 (2) : 211-227. doi: 10.3934/cpaa.2008.7.211

[20]

Renato C. Calleja, Alessandra Celletti, Rafael de la Llave. Construction of response functions in forced strongly dissipative systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4411-4433. doi: 10.3934/dcds.2013.33.4411

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]