June  2013, 5(2): 215-232. doi: 10.3934/jgm.2013.5.215

Semi-global symplectic invariants of the Euler top

1. 

School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia, Australia

Received  February 2013 Revised  June 2013 Published  July 2013

We compute the semi-global symplectic invariants near the hyperbolic equilibrium points of the Euler top. The Birkhoff normal form at the hyperbolic point is computed using Lie series. The actions near the hyperbolic point are found using Frobenius expansion of its Picard-Fuchs equation. We show that the Birkhoff normal form can also be found by inverting the regular solution of the Picard-Fuchs equation. Composition of the singular action integral with the inverse of the Birkhoff normal form gives the semi-global symplectic invariant. Finally, we discuss the convergence of these invariants and show that in a neighbourhood of the separatrix the pendulum is not symplectically equivalent to any Euler top.
Citation: George Papadopoulos, Holger R. Dullin. Semi-global symplectic invariants of the Euler top. Journal of Geometric Mechanics, 2013, 5 (2) : 215-232. doi: 10.3934/jgm.2013.5.215
References:
[1]

A. V. Bolsinov and H. R. Dullin, On the Euler case in rigid body dynamics and the Jacobi problem,, (Russian) Regul. Khaoticheskaya Din., 2 (1997), 13. Google Scholar

[2]

A. V. Bolsinov and A. T. Fomenko, The geodesic flow of an ellipsoid is orbitally equivalent to the integrable Euler case in the dynamics of a rigid body,, Dokl. Akad. Nauk, 339 (1994), 253. Google Scholar

[3]

A. V. Bolsinov and A. T. Fomenko, "Integrable Hamiltonian Systems: Geometry, Topology, Classification,'', Chapman & Hall/CRC, (2004). doi: 10.1201/9780203643426. Google Scholar

[4]

W. E. Boyce and R. C. DiPrima, "Elementary Differential Equations and Boundary Value Problems,'', $7^{th}$ edition, (2001). Google Scholar

[5]

C. H. Clemens, "A Scrapbook of Complex Curve Theory,'', The University Series in Mathematics, (1980). Google Scholar

[6]

R. H. Cushman and L. M. Bates, "Global Aspects of Classical Integrable Systems,'', Birkhäuser Verlag, (1997). doi: 10.1007/978-3-0348-8891-2. Google Scholar

[7]

J.-P. Dufour, P. Molino and A. Toulet, Classification des systèmes intégrables en dimension $2$ et invariants des modèles de Fomenko,, C. R. Acad. Sci. Paris Sér. I Math., 318 (1994), 949. Google Scholar

[8]

H. R. Dullin and S. Vũ Ngoc, Symplectic invariants near hyperbolic-hyperbolic points,, Regular and Chaotic Dynamics, 12 (2007), 689. doi: 10.1134/S1560354707060111. Google Scholar

[9]

H. R. Dullin, Semi-global symplectic invariants of the spherical pendulum,, Journal of Differential Equations, 254 (2013), 2942. doi: 10.1016/j.jde.2013.01.018. Google Scholar

[10]

H. R. Dullin, P. H. Richter, A. P. Veselov and H. Waalkens, Actions of the Neumann systems via Picard-Fuchs equations,, Physica D, 155 (2001), 159. doi: 10.1016/S0167-2789(01)00257-3. Google Scholar

[11]

D. D. Holm and J. E. Marsden, The rotor and the pendulum,, in, 99 (1991), 189. Google Scholar

[12]

E. Leimanis, "The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point,'', Springer Tracts in Natural Philosophy, 7 (1965). doi: 10.1007/978-3-642-88412-2. Google Scholar

[13]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems,'', Texts in Applied Mathematics, 17 (1999). doi: 10.1007/978-0-387-21792-5. Google Scholar

[14]

K. Meyer, G. Hall and D. Offin, "Introduction to Hamiltonian Dynamical Systems and the N-Body Problem,'', Second edition, 90 (2009). doi: 10.1007/978-0-387-09724-4. Google Scholar

[15]

S. Vũ Ngoc, On semi-global invariants for focus-focus singularities,, Topology, 42 (2003), 365. doi: 10.1016/S0040-9383(01)00026-X. Google Scholar

[16]

O. E. Orël, On the nonconjugacy of the Euler case in the dynamics of a rigid body and on the Jacobi problem of geodesics on an ellipsoid,, Mat. Zametki, 61 (1997), 252. doi: 10.1007/BF02355730. Google Scholar

[17]

George Papadopoulos, "Semi-Global Symplectic Invariants of the Euler Top,'', M.S. thesis, (2013). Google Scholar

[18]

Anne Toulet, "Classification of Integrable Systems on Two-Dimensional Symplectic Manifolds,'', Ph.D thesis, (1996). Google Scholar

[19]

Nguyen Tien Zung, Convergence versus integrability in Birkhoff normal form,, Annals of Mathematics (2), 161 (2005), 141. doi: 10.4007/annals.2005.161.141. Google Scholar

show all references

References:
[1]

A. V. Bolsinov and H. R. Dullin, On the Euler case in rigid body dynamics and the Jacobi problem,, (Russian) Regul. Khaoticheskaya Din., 2 (1997), 13. Google Scholar

[2]

A. V. Bolsinov and A. T. Fomenko, The geodesic flow of an ellipsoid is orbitally equivalent to the integrable Euler case in the dynamics of a rigid body,, Dokl. Akad. Nauk, 339 (1994), 253. Google Scholar

[3]

A. V. Bolsinov and A. T. Fomenko, "Integrable Hamiltonian Systems: Geometry, Topology, Classification,'', Chapman & Hall/CRC, (2004). doi: 10.1201/9780203643426. Google Scholar

[4]

W. E. Boyce and R. C. DiPrima, "Elementary Differential Equations and Boundary Value Problems,'', $7^{th}$ edition, (2001). Google Scholar

[5]

C. H. Clemens, "A Scrapbook of Complex Curve Theory,'', The University Series in Mathematics, (1980). Google Scholar

[6]

R. H. Cushman and L. M. Bates, "Global Aspects of Classical Integrable Systems,'', Birkhäuser Verlag, (1997). doi: 10.1007/978-3-0348-8891-2. Google Scholar

[7]

J.-P. Dufour, P. Molino and A. Toulet, Classification des systèmes intégrables en dimension $2$ et invariants des modèles de Fomenko,, C. R. Acad. Sci. Paris Sér. I Math., 318 (1994), 949. Google Scholar

[8]

H. R. Dullin and S. Vũ Ngoc, Symplectic invariants near hyperbolic-hyperbolic points,, Regular and Chaotic Dynamics, 12 (2007), 689. doi: 10.1134/S1560354707060111. Google Scholar

[9]

H. R. Dullin, Semi-global symplectic invariants of the spherical pendulum,, Journal of Differential Equations, 254 (2013), 2942. doi: 10.1016/j.jde.2013.01.018. Google Scholar

[10]

H. R. Dullin, P. H. Richter, A. P. Veselov and H. Waalkens, Actions of the Neumann systems via Picard-Fuchs equations,, Physica D, 155 (2001), 159. doi: 10.1016/S0167-2789(01)00257-3. Google Scholar

[11]

D. D. Holm and J. E. Marsden, The rotor and the pendulum,, in, 99 (1991), 189. Google Scholar

[12]

E. Leimanis, "The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point,'', Springer Tracts in Natural Philosophy, 7 (1965). doi: 10.1007/978-3-642-88412-2. Google Scholar

[13]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems,'', Texts in Applied Mathematics, 17 (1999). doi: 10.1007/978-0-387-21792-5. Google Scholar

[14]

K. Meyer, G. Hall and D. Offin, "Introduction to Hamiltonian Dynamical Systems and the N-Body Problem,'', Second edition, 90 (2009). doi: 10.1007/978-0-387-09724-4. Google Scholar

[15]

S. Vũ Ngoc, On semi-global invariants for focus-focus singularities,, Topology, 42 (2003), 365. doi: 10.1016/S0040-9383(01)00026-X. Google Scholar

[16]

O. E. Orël, On the nonconjugacy of the Euler case in the dynamics of a rigid body and on the Jacobi problem of geodesics on an ellipsoid,, Mat. Zametki, 61 (1997), 252. doi: 10.1007/BF02355730. Google Scholar

[17]

George Papadopoulos, "Semi-Global Symplectic Invariants of the Euler Top,'', M.S. thesis, (2013). Google Scholar

[18]

Anne Toulet, "Classification of Integrable Systems on Two-Dimensional Symplectic Manifolds,'', Ph.D thesis, (1996). Google Scholar

[19]

Nguyen Tien Zung, Convergence versus integrability in Birkhoff normal form,, Annals of Mathematics (2), 161 (2005), 141. doi: 10.4007/annals.2005.161.141. Google Scholar

[1]

Andrey Tsiganov. Integrable Euler top and nonholonomic Chaplygin ball. Journal of Geometric Mechanics, 2011, 3 (3) : 337-362. doi: 10.3934/jgm.2011.3.337

[2]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[3]

Luigi Chierchia, Gabriella Pinzari. Planetary Birkhoff normal forms. Journal of Modern Dynamics, 2011, 5 (4) : 623-664. doi: 10.3934/jmd.2011.5.623

[4]

John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170

[5]

José Natário. An elementary derivation of the Montgomery phase formula for the Euler top. Journal of Geometric Mechanics, 2010, 2 (1) : 113-118. doi: 10.3934/jgm.2010.2.113

[6]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[7]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[8]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[9]

Carles Simó, Dmitry Treschev. Stability islands in the vicinity of separatrices of near-integrable symplectic maps. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 681-698. doi: 10.3934/dcdsb.2008.10.681

[10]

Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362

[11]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[12]

Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97

[13]

Andrei Fursikov. Stabilization of the simplest normal parabolic equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1815-1854. doi: 10.3934/cpaa.2014.13.1815

[14]

Luca Biasco, Laura Di Gregorio. Periodic solutions of Birkhoff-Lewis type for the nonlinear wave equation. Conference Publications, 2007, 2007 (Special) : 102-109. doi: 10.3934/proc.2007.2007.102

[15]

Stefan Siegmund. Normal form of Duffing-van der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357-361. doi: 10.3934/proc.2001.2001.357

[16]

Primitivo B. Acosta-Humánez, Martha Alvarez-Ramírez, David Blázquez-Sanz, Joaquín Delgado. Non-integrability criterium for normal variational equations around an integrable subsystem and an example: The Wilberforce spring-pendulum. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 965-986. doi: 10.3934/dcds.2013.33.965

[17]

David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319

[18]

Rafael de la Rosa, María Santos Bruzón. Differential invariants of a generalized variable-coefficient Gardner equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 747-757. doi: 10.3934/dcdss.2018047

[19]

Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3227-3250. doi: 10.3934/dcds.2016.36.3227

[20]

Andrei Fursikov. The simplest semilinear parabolic equation of normal type. Mathematical Control & Related Fields, 2012, 2 (2) : 141-170. doi: 10.3934/mcrf.2012.2.141

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]