    September  2013, 5(3): 319-344. doi: 10.3934/jgm.2013.5.319

## On Euler's equation and 'EPDiff'

 1 Division of Applied Mathematics, Brown University, Box F, Providence, RI 02912, United States 2 Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria

Received  November 2012 Revised  June 2013 Published  September 2013

We study a family of approximations to Euler's equation depending on two parameters $\epsilon,η \ge 0$. When $\epsilon = η = 0$ we have Euler's equation and when both are positive we have instances of the class of integro-differential equations called EPDiff in imaging science. These are all geodesic equations on either the full diffeomorphism group ${Diff}_{H^\infty}(\mathbb{R}^n)$ or, if $\epsilon = 0$, its volume preserving subgroup. They are defined by the right invariant metric induced by the norm on vector fields given by $$||v||_{\epsilon,η} = \int_{\mathbb{R}^n} \langle L_{\epsilon,η} v, v \rangle\, dx$$ where $L_{\epsilon,η} = (I-\frac{η^2}{p} \triangle)^p \circ (I-\frac {1}{\epsilon^2} \nabla \circ div)$. All geodesic equations are locally well-posed, and the $L_{\epsilon,η}$-equation admits solutions for all time if $η > 0$ and $p\ge (n+3)/2$. We tie together solutions of all these equations by estimates which, however, are only local in time. This approach leads to a new notion of momentum which is transported by the flow and serves as a generalization of vorticity. We also discuss how delta distribution momenta lead to vortex-solitons", also called landmarks" in imaging science, and to new numeric approximations to fluids.
Citation: David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319
##### References:
  "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,", Edited by Milton Abramowitz and Irene A. Stegun,, Reprint of the 1972 edition. Dover Publications, (1972). Google Scholar  V. I. Arnold, Sur la géomtrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Annales de L'Institut Fourier, 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar  M. Bauer, P. Harms, and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, SIAM Journal on Imaging Sciences, 5 (2012), 244.  doi: 10.1137/100807983.  Google Scholar  Thomas Buttke, The fast adaptive vortex method,, Journal of Computational Physics, 93 (1991).  doi: 10.1016/0021-9991(91)90198-T.  Google Scholar  Roberto Camassa and Darryl Holm, An integrable shallow water equation with peaked solutions,, Physical Review Letters, 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar  Alexandre Chorin, "Vorticity and Turbulence,", Springer-Verlag, (1994). Google Scholar  Ricardo Cortez, On the accuracy of impulse methods for fluid flow,, SIAM Journal on Scientific Computing, 19 (1998), 1290.  doi: 10.1137/S1064827595293570.  Google Scholar  Darryl Holm, Jerrold Marsden and Tudor Ratiu, The Euler-Poincarè equations and semidirect products with applications to continuum theories,, Advances in Mathematics, 137 (1998), 1.  doi: 10.1006/aima.1998.1721.  Google Scholar  Darryl Holm and Jerrold Marsden, Momentum maps and measure-valued solutions for the EPDiff equation,, in, 232 (2004), 203.  doi: 10.1007/0-8176-4419-9_8. Google Scholar  Lars Hörmander, "The Analysis of Linear Partial Differential Operators. I,", Springer-Verlag, (1983).   Google Scholar  Tosio Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, in, 448 (1975), 27. Google Scholar  Mario Micheli, Peter Michor and David Mumford, Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks,, SIAM Journal on Imaging Sciences, 5 (2012), 394.  doi: 10.1137/10081678X.  Google Scholar  Mario Micheli, Peter W. Michor and David Mumford, Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds,, Izvestiya: Mathematics, 77 (2013), 541.  doi: 10.1070/IM2013v077n03ABEH002648. Google Scholar  Peter W. Michor and David Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Documenta Mathematica, 10 (2005), 217. Google Scholar  Peter W. Michor and David Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Applied and Computational Harmonic Analysis, 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar  Peter W. Michor and David Mumford, A zoo of diffeomorphism groups on $\mathbbR^n$,, Annals of Global Ananlysis and Geometry, (2013).  doi: 10.1007/s10455-013-9380-2. Google Scholar  Michael I. Miller, Gary E. Christensen, Yali Amit and Ulf Grenander, Mathematical textbook of deformable neuroanatomies,, Proceedings National Academy of Science, 90 (1993), 11944.  doi: 10.1073/pnas.90.24.11944. Google Scholar  Michael Miller, Alain Trouvé and Laurent Younes, On the metrics and Euler-Lagrange equations of computational anatomy,, Annual Review of Biomedical Engineering, (2002), 375.   Google Scholar  V. I. Oseledets, On a new way of writing the Navier-Stokes equations: The Hamiltonian formalism,, Communications of the Moscow Mathematical Society (1988). Translation in Russian Mathematics Surveys, 44 (1988), 210.  doi: 10.1070/RM1989v044n03ABEH002122.  Google Scholar  P. H. Roberts, A Hamiltonian theory for weakly interacting vortices,, Mathematika, 19 (1972), 169.  doi: 10.1112/S0025579300005611. Google Scholar  Michael E. Taylor, "Partial Differential Equations III: Nonlinear Equations,", Springer, (2010). Google Scholar  Alain Trouvé and Laurent Younes, Local geometry of deformable templates,, SIAM Journal on Mathematical Analysis, 37 (2005), 17.  doi: 10.1137/S0036141002404838.  Google Scholar  L. Younes, "Shapes and Diffeomorphisms,", Springer, (2010).  doi: 10.1007/978-3-642-12055-8.  Google Scholar

show all references

##### References:
  "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,", Edited by Milton Abramowitz and Irene A. Stegun,, Reprint of the 1972 edition. Dover Publications, (1972). Google Scholar  V. I. Arnold, Sur la géomtrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Annales de L'Institut Fourier, 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar  M. Bauer, P. Harms, and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, SIAM Journal on Imaging Sciences, 5 (2012), 244.  doi: 10.1137/100807983.  Google Scholar  Thomas Buttke, The fast adaptive vortex method,, Journal of Computational Physics, 93 (1991).  doi: 10.1016/0021-9991(91)90198-T.  Google Scholar  Roberto Camassa and Darryl Holm, An integrable shallow water equation with peaked solutions,, Physical Review Letters, 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar  Alexandre Chorin, "Vorticity and Turbulence,", Springer-Verlag, (1994). Google Scholar  Ricardo Cortez, On the accuracy of impulse methods for fluid flow,, SIAM Journal on Scientific Computing, 19 (1998), 1290.  doi: 10.1137/S1064827595293570.  Google Scholar  Darryl Holm, Jerrold Marsden and Tudor Ratiu, The Euler-Poincarè equations and semidirect products with applications to continuum theories,, Advances in Mathematics, 137 (1998), 1.  doi: 10.1006/aima.1998.1721.  Google Scholar  Darryl Holm and Jerrold Marsden, Momentum maps and measure-valued solutions for the EPDiff equation,, in, 232 (2004), 203.  doi: 10.1007/0-8176-4419-9_8. Google Scholar  Lars Hörmander, "The Analysis of Linear Partial Differential Operators. I,", Springer-Verlag, (1983).   Google Scholar  Tosio Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, in, 448 (1975), 27. Google Scholar  Mario Micheli, Peter Michor and David Mumford, Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks,, SIAM Journal on Imaging Sciences, 5 (2012), 394.  doi: 10.1137/10081678X.  Google Scholar  Mario Micheli, Peter W. Michor and David Mumford, Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds,, Izvestiya: Mathematics, 77 (2013), 541.  doi: 10.1070/IM2013v077n03ABEH002648. Google Scholar  Peter W. Michor and David Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Documenta Mathematica, 10 (2005), 217. Google Scholar  Peter W. Michor and David Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Applied and Computational Harmonic Analysis, 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar  Peter W. Michor and David Mumford, A zoo of diffeomorphism groups on $\mathbbR^n$,, Annals of Global Ananlysis and Geometry, (2013).  doi: 10.1007/s10455-013-9380-2. Google Scholar  Michael I. Miller, Gary E. Christensen, Yali Amit and Ulf Grenander, Mathematical textbook of deformable neuroanatomies,, Proceedings National Academy of Science, 90 (1993), 11944.  doi: 10.1073/pnas.90.24.11944. Google Scholar  Michael Miller, Alain Trouvé and Laurent Younes, On the metrics and Euler-Lagrange equations of computational anatomy,, Annual Review of Biomedical Engineering, (2002), 375.   Google Scholar  V. I. Oseledets, On a new way of writing the Navier-Stokes equations: The Hamiltonian formalism,, Communications of the Moscow Mathematical Society (1988). Translation in Russian Mathematics Surveys, 44 (1988), 210.  doi: 10.1070/RM1989v044n03ABEH002122.  Google Scholar  P. H. Roberts, A Hamiltonian theory for weakly interacting vortices,, Mathematika, 19 (1972), 169.  doi: 10.1112/S0025579300005611. Google Scholar  Michael E. Taylor, "Partial Differential Equations III: Nonlinear Equations,", Springer, (2010). Google Scholar  Alain Trouvé and Laurent Younes, Local geometry of deformable templates,, SIAM Journal on Mathematical Analysis, 37 (2005), 17.  doi: 10.1137/S0036141002404838.  Google Scholar  L. Younes, "Shapes and Diffeomorphisms,", Springer, (2010).  doi: 10.1007/978-3-642-12055-8.  Google Scholar
  Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007  Cheng Cheng, Shaobo Gan, Yi Shi. A robustly transitive diffeomorphism of Kan's type. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 867-888. doi: 10.3934/dcds.2018037  Adriano Regis Rodrigues, César Castilho, Jair Koiller. Vortex pairs on a triaxial ellipsoid and Kimura's conjecture. Journal of Geometric Mechanics, 2018, 10 (2) : 189-208. doi: 10.3934/jgm.2018007  Rafael de la Llave, A. Windsor. Smooth dependence on parameters of solutions to cohomology equations over Anosov systems with applications to cohomology equations on diffeomorphism groups. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1141-1154. doi: 10.3934/dcds.2011.29.1141  S. Raynor, G. Staffilani. Low regularity stability of solitons for the KDV equation. Communications on Pure & Applied Analysis, 2003, 2 (3) : 277-296. doi: 10.3934/cpaa.2003.2.277  Yvan Martel, Frank Merle. Inelastic interaction of nearly equal solitons for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 487-532. doi: 10.3934/dcds.2010.27.487  Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063  Yong Duan, Jian-Guo Liu. Convergence analysis of the vortex blob method for the $b$-equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1995-2011. doi: 10.3934/dcds.2014.34.1995  Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323  Feng Zhou, Chunyou Sun. Dynamics for the complex Ginzburg-Landau equation on non-cylindrical domains I: The diffeomorphism case. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3767-3792. doi: 10.3934/dcdsb.2016120  Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637  Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597  Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871  Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359  Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511  Alexander Moreto. Complex group algebras of finite groups: Brauer's Problem 1. Electronic Research Announcements, 2005, 11: 34-39.  Brandon Seward. Krieger's finite generator theorem for actions of countable groups Ⅱ. Journal of Modern Dynamics, 2019, 15: 1-39. doi: 10.3934/jmd.2019012  Aibin Zang. Kato's type theorems for the convergence of Euler-Voigt equations to Euler equations with Drichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4945-4953. doi: 10.3934/dcds.2019202  Hicham Zmarrou, Ale Jan Homburg. Dynamics and bifurcations of random circle diffeomorphism. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 719-731. doi: 10.3934/dcdsb.2008.10.719  S. Huff, G. Olumolode, N. Pennington, A. Peterson. Oscillation of an Euler-Cauchy dynamic equation. Conference Publications, 2003, 2003 (Special) : 423-431. doi: 10.3934/proc.2003.2003.423

2018 Impact Factor: 0.525