2013, 5(1): 85-129. doi: 10.3934/jgm.2013.5.85

Vector fields with distributions and invariants of ODEs

1. 

Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warszawa, Poland, Poland

Received  July 2012 Revised  February 2013 Published  April 2013

We study dynamic pairs $(X,V)$ where $X$ is a vector field on a smooth manifold $M$ and $V\subset TM$ is a vector distribution, both satisfying certain regularity conditions. We construct basic invariants of such objects and solve the equivalence problem. In particular, we assign to $(X,V)$ a canonical connection and a canonical frame on a certain frame bundle. We compute the curvature and torsion. The results are applied to the problem of time scale preserving equivalence of ordinary differential equations and of Veronese webs. The framework of dynamic pairs $(X,V)$ is shown to include sprays, control-affine systems, mechanical control systems, Veronese webs and other structures.
Citation: BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85-129. doi: 10.3934/jgm.2013.5.85
References:
[1]

A. Agrachev, The curvature and hyperbolicity of Hamiltonian systems,, Proceed. Steklov Math. Inst., 256 (2007), 26. doi: 10.1134/S0081543807010026.

[2]

A. Agrachev and R. Gamkrelidze, Feedback-invariant optimal control theory and differential geometry, I. Regular extremals,, J. Dynamical and Control Systems, 3 (1997), 343. doi: 10.1007/BF02463256.

[3]

A. Agrachev, N. Chtcherbakova and I. Zelenko, On curvatures and focal points of dynamical Lagrangian distributions and their reductions by first integrals,, J. of Dynamical and Control Syst., 11 (2005), 297. doi: 10.1007/s10883-005-6581-4.

[4]

C. Boehmer and T. Harko, Nonlinear stability analysis of the Emden-Fowler equation,, J. Nonlinear Math. Phys., 17 (2010), 503. doi: 10.1142/S1402925110001100.

[5]

R. Bryant, Two exotic holonomies in dimension four, path geometries, and twistor theory,, Proc. Sympos. Pure Math., 53 (1991), 33.

[6]

I. Bucataru, Linear connections for systems of higher order differential equations,, Houston Journal of Mathematics, 31 (2005), 315.

[7]

I. Bucataru, O. A. Constantinescu and M. F. Dahl, A geometric setting for systems of ordinary differential equations,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1291. doi: 10.1142/S0219887811005701.

[8]

F. Bullo and A. D. Lewis, "Geometric Control of Mechanical Systems,", Springer Verlag, (2004).

[9]

E. Cartan, Sur les variétés a connexion projective,, Bull. Soc. Math. France, 52 (1924), 205.

[10]

E. Cartan, Observations sur le mémoir précédent,, Math. Z., 37 (1933), 619. doi: 10.1007/BF01474603.

[11]

S.-S. Chern, The geometry of the differential equation $y'''=F(x,y,y',y'')$,, Sci. Rep. Nat. Tsing Hua Univ., 4 (1940), 97.

[12]

S.-S. Chern, Sur la géométrie d'un systéme d'équations différentialles du second ordre,, Bull. Sci. Math. 63 (1939), 63 (1939), 206.

[13]

S.-S. Chern, The geometry of higher path-spaces,, Journal of the Chinese Mathematical Society, 2 (1940), 247.

[14]

M. Crampin, G. Prince and G. Thompson, A geometrical version of the Helmholtz conditions in time-dependent Lagrangian dynamics,, J. Phys. A: Math. Gen., 17 (1984).

[15]

M. Crampin, E. Martinez and W. Sarlet, Linear connections for systems of second-order ordinary differential equations,, Ann. Inst. Henri Poincare, 65 (1996), 223.

[16]

M. Crampin and D. Saunders, On the geometry of higher-order ordinary differential equations and the Wuenschmann invariant,, Groups, 29 (2006), 79.

[17]

B. Doubrov, B. Komrakov and T. Morimoto, Equivalence of holonomic differential equations,, Lobachevskii Journal of Math., 3 (1999), 39.

[18]

M. Dunajski and P. Tod, Paraconformal geometry of n-th order ODEs, and exotic holonomy in dimension four,, J. Geom. Phys., 56 (2006), 1790. doi: 10.1016/j.geomphys.2005.10.007.

[19]

M. E. Fels, The equivalence problem for systems of second order ordinary differential equations,, Proc. London Math. Soc., 71 (1995), 221. doi: 10.1112/plms/s3-71.1.221.

[20]

R. V. Gamkrelidze (Ed.), "Geometry I,", Encyclopaedia of Math. Sciences, 28 ().

[21]

I. M. Gelfand and I. Zakharevich, Webs, Veronese curves, and bi-Hamiltonian systems,, Journal of Functional Analysis, 99 (1991), 150. doi: 10.1016/0022-1236(91)90057-C.

[22]

M. Godliński and P. Nurowski, $GL(2,R)$ geometry of ODEs,, J. Geom. Phys., 60 (2010), 991. doi: 10.1016/j.geomphys.2010.03.003.

[23]

J. Grifone, Structure presque-tangente et connexions I,, Ann. Inst. Fourier, 22 (1972), 287.

[24]

B. Jakubczyk, Curvatures of single-input control systems,, Control and Cybernetics, 38 (2009), 1375.

[25]

B. Jakubczyk and W. Kryński, Relative curvatures of vector fields and their conjugate points,, in preparation., ().

[26]

B. Jakubczyk and W. Kryński, Vector fields with distributions and invariants of ODEs., Preprint 728, (2010).

[27]

S. Kobayashi, "Transformation Groups in Differential Geometry,", Springer-Verlag, (1972).

[28]

D. Kosambi, System of differential equations of second order,, Quart. J. Math. Oxford Ser., 6 (1935), 1.

[29]

D. Kosambi, Path spaces of higher order,, Quart. J. Math. Oxford Ser., 7 (1936), 97.

[30]

W. Kryński, "Equivalence Problems for Tangent Distributions and Ordinary Differential Equations,", PhD thesis, (2008).

[31]

W. Kryński, Paraconformal structures and differential equations,, Differential Geometry and its Applications, 28 (2010), 523. doi: 10.1016/j.difgeo.2010.05.003.

[32]

W. Kryński, Geometry of isotypic Kronecker webs,, Central European Journal of Mathematics, 10 (2012), 1872. doi: 10.2478/s11533-012-0081-z.

[33]

T. Mestdag and M. Crampin, Involutive distributions and dynamical systems of second-order type,, Diff. Geom. Appl., 29 (2011), 747. doi: 10.1016/j.difgeo.2011.08.003.

[34]

R. Miron, "The Geometry of Higher-Order Lagrange Spaces,", Kluwer Academic Publishers, (1997).

[35]

W. Respondek and S. Ricardo, When is a control system mechanical?,, J. Geometric Mechanics, 2 (2010), 265. doi: 10.3934/jgm.2010.2.265.

[36]

Z. Shen, "Lectures on Finsler Geometry,", World Scientific, (2001). doi: 10.1142/9789812811622.

[37]

S. Sternberg, "Lectures on Differential Geometry,", Prentice-Hall, (1964).

[38]

F.-J. Turiel, $C^\infty$-equivalence entre tissus de Veronese et structures bihamiltoniennes,, Comptes Rendus de l'Acad. des Sciences. Ser. I. Math., 328 (1999), 891. doi: 10.1016/S0764-4442(99)80292-4.

[39]

F.-J. Turiel, $C^\infty$-classification des germes de tissus de Veronese,, Comptes Rendus de l'Acad. des Sciences. Ser. I. Math., 329 (1999), 425. doi: 10.1016/S0764-4442(00)88618-8.

[40]

E. Wilczynski, "Projective Differential Geometry of Curves and Rules Surfaces,", Teubner, (1906).

[41]

T. Yajima and H. Nagahama, KCC-theory and geometry of the Rikitake system,, Journal of Physics A - Mathematical and Theoretical, 40 (2007), 2755. doi: 10.1088/1751-8113/40/11/011.

[42]

I. Zakharevich, Kronecker webs, bihamiltonian structures, and the method of argument translation,, Transform. Groups, 6 (2001), 267. doi: 10.1007/BF01263093.

show all references

References:
[1]

A. Agrachev, The curvature and hyperbolicity of Hamiltonian systems,, Proceed. Steklov Math. Inst., 256 (2007), 26. doi: 10.1134/S0081543807010026.

[2]

A. Agrachev and R. Gamkrelidze, Feedback-invariant optimal control theory and differential geometry, I. Regular extremals,, J. Dynamical and Control Systems, 3 (1997), 343. doi: 10.1007/BF02463256.

[3]

A. Agrachev, N. Chtcherbakova and I. Zelenko, On curvatures and focal points of dynamical Lagrangian distributions and their reductions by first integrals,, J. of Dynamical and Control Syst., 11 (2005), 297. doi: 10.1007/s10883-005-6581-4.

[4]

C. Boehmer and T. Harko, Nonlinear stability analysis of the Emden-Fowler equation,, J. Nonlinear Math. Phys., 17 (2010), 503. doi: 10.1142/S1402925110001100.

[5]

R. Bryant, Two exotic holonomies in dimension four, path geometries, and twistor theory,, Proc. Sympos. Pure Math., 53 (1991), 33.

[6]

I. Bucataru, Linear connections for systems of higher order differential equations,, Houston Journal of Mathematics, 31 (2005), 315.

[7]

I. Bucataru, O. A. Constantinescu and M. F. Dahl, A geometric setting for systems of ordinary differential equations,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1291. doi: 10.1142/S0219887811005701.

[8]

F. Bullo and A. D. Lewis, "Geometric Control of Mechanical Systems,", Springer Verlag, (2004).

[9]

E. Cartan, Sur les variétés a connexion projective,, Bull. Soc. Math. France, 52 (1924), 205.

[10]

E. Cartan, Observations sur le mémoir précédent,, Math. Z., 37 (1933), 619. doi: 10.1007/BF01474603.

[11]

S.-S. Chern, The geometry of the differential equation $y'''=F(x,y,y',y'')$,, Sci. Rep. Nat. Tsing Hua Univ., 4 (1940), 97.

[12]

S.-S. Chern, Sur la géométrie d'un systéme d'équations différentialles du second ordre,, Bull. Sci. Math. 63 (1939), 63 (1939), 206.

[13]

S.-S. Chern, The geometry of higher path-spaces,, Journal of the Chinese Mathematical Society, 2 (1940), 247.

[14]

M. Crampin, G. Prince and G. Thompson, A geometrical version of the Helmholtz conditions in time-dependent Lagrangian dynamics,, J. Phys. A: Math. Gen., 17 (1984).

[15]

M. Crampin, E. Martinez and W. Sarlet, Linear connections for systems of second-order ordinary differential equations,, Ann. Inst. Henri Poincare, 65 (1996), 223.

[16]

M. Crampin and D. Saunders, On the geometry of higher-order ordinary differential equations and the Wuenschmann invariant,, Groups, 29 (2006), 79.

[17]

B. Doubrov, B. Komrakov and T. Morimoto, Equivalence of holonomic differential equations,, Lobachevskii Journal of Math., 3 (1999), 39.

[18]

M. Dunajski and P. Tod, Paraconformal geometry of n-th order ODEs, and exotic holonomy in dimension four,, J. Geom. Phys., 56 (2006), 1790. doi: 10.1016/j.geomphys.2005.10.007.

[19]

M. E. Fels, The equivalence problem for systems of second order ordinary differential equations,, Proc. London Math. Soc., 71 (1995), 221. doi: 10.1112/plms/s3-71.1.221.

[20]

R. V. Gamkrelidze (Ed.), "Geometry I,", Encyclopaedia of Math. Sciences, 28 ().

[21]

I. M. Gelfand and I. Zakharevich, Webs, Veronese curves, and bi-Hamiltonian systems,, Journal of Functional Analysis, 99 (1991), 150. doi: 10.1016/0022-1236(91)90057-C.

[22]

M. Godliński and P. Nurowski, $GL(2,R)$ geometry of ODEs,, J. Geom. Phys., 60 (2010), 991. doi: 10.1016/j.geomphys.2010.03.003.

[23]

J. Grifone, Structure presque-tangente et connexions I,, Ann. Inst. Fourier, 22 (1972), 287.

[24]

B. Jakubczyk, Curvatures of single-input control systems,, Control and Cybernetics, 38 (2009), 1375.

[25]

B. Jakubczyk and W. Kryński, Relative curvatures of vector fields and their conjugate points,, in preparation., ().

[26]

B. Jakubczyk and W. Kryński, Vector fields with distributions and invariants of ODEs., Preprint 728, (2010).

[27]

S. Kobayashi, "Transformation Groups in Differential Geometry,", Springer-Verlag, (1972).

[28]

D. Kosambi, System of differential equations of second order,, Quart. J. Math. Oxford Ser., 6 (1935), 1.

[29]

D. Kosambi, Path spaces of higher order,, Quart. J. Math. Oxford Ser., 7 (1936), 97.

[30]

W. Kryński, "Equivalence Problems for Tangent Distributions and Ordinary Differential Equations,", PhD thesis, (2008).

[31]

W. Kryński, Paraconformal structures and differential equations,, Differential Geometry and its Applications, 28 (2010), 523. doi: 10.1016/j.difgeo.2010.05.003.

[32]

W. Kryński, Geometry of isotypic Kronecker webs,, Central European Journal of Mathematics, 10 (2012), 1872. doi: 10.2478/s11533-012-0081-z.

[33]

T. Mestdag and M. Crampin, Involutive distributions and dynamical systems of second-order type,, Diff. Geom. Appl., 29 (2011), 747. doi: 10.1016/j.difgeo.2011.08.003.

[34]

R. Miron, "The Geometry of Higher-Order Lagrange Spaces,", Kluwer Academic Publishers, (1997).

[35]

W. Respondek and S. Ricardo, When is a control system mechanical?,, J. Geometric Mechanics, 2 (2010), 265. doi: 10.3934/jgm.2010.2.265.

[36]

Z. Shen, "Lectures on Finsler Geometry,", World Scientific, (2001). doi: 10.1142/9789812811622.

[37]

S. Sternberg, "Lectures on Differential Geometry,", Prentice-Hall, (1964).

[38]

F.-J. Turiel, $C^\infty$-equivalence entre tissus de Veronese et structures bihamiltoniennes,, Comptes Rendus de l'Acad. des Sciences. Ser. I. Math., 328 (1999), 891. doi: 10.1016/S0764-4442(99)80292-4.

[39]

F.-J. Turiel, $C^\infty$-classification des germes de tissus de Veronese,, Comptes Rendus de l'Acad. des Sciences. Ser. I. Math., 329 (1999), 425. doi: 10.1016/S0764-4442(00)88618-8.

[40]

E. Wilczynski, "Projective Differential Geometry of Curves and Rules Surfaces,", Teubner, (1906).

[41]

T. Yajima and H. Nagahama, KCC-theory and geometry of the Rikitake system,, Journal of Physics A - Mathematical and Theoretical, 40 (2007), 2755. doi: 10.1088/1751-8113/40/11/011.

[42]

I. Zakharevich, Kronecker webs, bihamiltonian structures, and the method of argument translation,, Transform. Groups, 6 (2001), 267. doi: 10.1007/BF01263093.

[1]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[2]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[3]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[4]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[5]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[6]

Tomasz Kapela, Piotr Zgliczyński. A Lohner-type algorithm for control systems and ordinary differential inclusions. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 365-385. doi: 10.3934/dcdsb.2009.11.365

[7]

Michael C. Sullivan. Invariants of twist-wise flow equivalence. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 475-484. doi: 10.3934/dcds.1998.4.475

[8]

Michael C. Sullivan. Invariants of twist-wise flow equivalence. Electronic Research Announcements, 1997, 3: 126-130.

[9]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[10]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control & Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

[11]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[12]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[13]

Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91

[14]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[15]

Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040

[16]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[17]

Yong Ren, Xuejuan Jia, Lanying Hu. Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2157-2169. doi: 10.3934/dcdsb.2015.20.2157

[18]

Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029

[19]

Wen Li, Song Wang, Volker Rehbock. A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 273-287. doi: 10.3934/naco.2017018

[20]

Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595

2016 Impact Factor: 0.857

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]