2014, 6(4): 503-526. doi: 10.3934/jgm.2014.6.503

Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings

1. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warszawa, Poland

2. 

Division of Mathematical Methods in Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warszawa, Poland, Poland

Received  January 2014 Revised  May 2014 Published  December 2014

The Lagrangian description of mechanical systems and the Legendre Transformation (considered as a passage from the Lagrangian to the Hamiltonian formulation of the dynamics) for point-like objects, for which the infinitesimal configuration space is $T M$, is based on the existence of canonical symplectic isomorphisms of double vector bundles $T^* TM$, $T^*T^* M$, and $TT^* M$, where the symplectic structure on $TT^* M$ is the tangent lift of the canonical symplectic structure $T^* M$. We show that there exists an analogous picture in the dynamics of objects for which the configuration space is $\wedge^n T M$, if we make use of certain structures of graded bundles of degree $n$, i.e. objects generalizing vector bundles (for which $n=1$). For instance, the role of $TT^*M$ is played in our approach by the manifold $\wedge^nT M\wedge^nT^*M$, which is canonically a graded bundle of degree $n$ over $\wedge^nT M$. Dynamics of strings and the Plateau problem in statics are particular cases of this framework.
Citation: Janusz Grabowski, Katarzyna Grabowska, Paweł Urbański. Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings. Journal of Geometric Mechanics, 2014, 6 (4) : 503-526. doi: 10.3934/jgm.2014.6.503
References:
[1]

C. Buttin, Théorie des opérateurs différentiels gradués sur les formes différentielles,, Bull. Soc. Math. France, 102 (1974), 49.

[2]

F. Cantrijn, L. A. Ibort and M. De Leon, Hamiltonian structures on multisymplectic manifolds,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 225.

[3]

C. M. Campos, E. Guzmán and J. C. Marrero, Classical field theories of first order and lagrangian submanifolds of premultisymplectic manifolds,, J. Geom. Mech., 4 (2012), 1. doi: 10.3934/jgm.2012.4.1.

[4]

J. F. Cariñena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order theories,, Differential Geom. Appl., 1 (1991), 345. doi: 10.1016/0926-2245(91)90013-Y.

[5]

A. Echeverría-Enríquez and M. C. Muñoz-Lecanda, Geometry of multisymplectic Hamiltonian first order theory,, J. Math. Phys., 41 (2000), 7402. doi: 10.1063/1.1308075.

[6]

L. E. Evans, Partial Differential Equations,, Graduate Studies in Mathematics 19, 19 (1998).

[7]

M. Forger, C. Paufler and H. Römer, A general construction of Poisson brackets on exact multisymplectic manifolds,, Rep. Math. Phys., 51 (2003), 187. doi: 10.1016/S0034-4877(03)80012-5.

[8]

M. Forger, C. Paufler and H. Römer, Hamiltonian multivector fields and Poisson forms in multisymplectic field theories,, J. Math. Phys., 46 (2005), 112903. doi: 10.1063/1.2116320.

[9]

M. Forger and L. G. Gomes, Multisymplectic and polysymplectic structures on fiber bundles,, Rev. Math. Phys., 25 (2013). doi: 10.1142/S0129055X13500189.

[10]

K. Gawędzki, On the geometrization of the canonical formalism in the classical field theory,, Rep. Math. Phys., 3 (1972), 307. doi: 10.1016/0034-4877(72)90014-6.

[11]

G. Giachetta and L. Mangiarotti, Constrained Hamiltonian Systems and Gauge Theories,, Int. J. Theor. Phys., 34 (1995), 2353. doi: 10.1007/BF00670772.

[12]

G. Giachetta, L. Mangiarotti and G. A. Sardanashvili, Advanced Classical Field Theory,, World Scientific, (2009). doi: 10.1142/9789812838964.

[13]

M. J. Gotay, J. Isenberg and J. E. Marsden, Momentum maps and classical relativistic fields, Part I: Covariant field theory,, preprint, ().

[14]

M. J. Gotay, J. Isenberg and J. E. Marsden, Momentum maps and classical relativistic fields, Part II: Canonical analysis of field theories,, preprint, ().

[15]

K. Grabowska, The Tulczyjew triple for classical fields,, J. Phys. A, 45 (2012), 145207. doi: 10.1088/1751-8113/45/14/145207.

[16]

K. Grabowska, Lagrangian and Hamiltonian formalism in field theory: A simple model,, J. Geom. Mech., 2 (2010), 375. doi: 10.3934/jgm.2010.2.375.

[17]

K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids,, J. Phys. A: Math. Theor., 41 (2008). doi: 10.1088/1751-8113/41/17/175204.

[18]

K. Grabowska and J. Grabowski, Dirac algebroids in Lagrangian and Hamiltonian mechanics,, J. Geom. Phys., 61 (2011), 2233. doi: 10.1016/j.geomphys.2011.06.018.

[19]

K. Grabowska and J. Grabowski, Tulczyjew triples: From statics to field theory,, J. Geom. Mech., 5 (2013), 445. doi: 10.3934/jgm.2013.5.445.

[20]

K. Grabowska, J. Grabowski and P. Urbański, Geometrical Mechanics on algebroids,, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 559. doi: 10.1142/S0219887806001259.

[21]

J. Grabowski, Brakets,, Int. J. Geom. Methods Mod. Phys. 10 (2013), 10 (2013). doi: 10.1142/S0219887813600013.

[22]

J. Grabowski and M. Rotkiewicz, Higher vector bundles and multi-graded symplectic manifolds,, J. Geom. Phys., 59 (2009), 1285. doi: 10.1016/j.geomphys.2009.06.009.

[23]

J. Grabowski and M. Rotkiewicz, Graded bundles and homogeneity structures,, J.Geom. Phys., 62 (2012), 21. doi: 10.1016/j.geomphys.2011.09.004.

[24]

J. Grabowski and P. Urbański, Tangent lifts of Poisson and related structures,, J. Phys. A, 28 (1995), 6743. doi: 10.1088/0305-4470/28/23/024.

[25]

J. Grabowski and P. Urbański, Algebroids - general differential calculi on vector bundles,, J. Geom. Phys., 31 (1999), 111. doi: 10.1016/S0393-0440(99)00007-8.

[26]

C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations. I. The local case,, J. Differential Geom., 25 (1987), 23.

[27]

J. Kijowski and W. Szczyrba, A canonical structure for classical field theories,, Commun. Math. Phys., 46 (1976), 183. doi: 10.1007/BF01608496.

[28]

J. Kijowski and W. M. Tulczyjew, A Symplectic Framework for Field Theories,, Lecture Notes in Physics, (1979).

[29]

I. Kolář and J. Tomáš, Gauge-natural transformations of some cotangent bundles,, Acta Univ. M. Belii ser. Mathematics, 5 (1997), 3.

[30]

K. Konieczna and P. Urbański, Double vector bundles and duality,, Arch. Math. (Brno), 35 (1999), 59.

[31]

O. Krupková, Hamiltonian field theory,, J. Geom. Phys. 43 (2002), 43 (2002), 93. doi: 10.1016/S0393-0440(01)00087-0.

[32]

M. de León, D. Martín de Diego and A. Santamaría-Merino, Tulczyjew's triples and lagrangian submanifolds in classical field theories,, in Applied Differential Geometry and Mechanics (eds. W. Sarlet and F. Cantrijn), (2003), 21.

[33]

P. Libermann and C. M. Marle, Symplectic Geometry and Analytical Mechanics,, Translated from the French by Bertram Eugene Schwarzbach. Mathematics and its Applications, (1987). doi: 10.1007/978-94-009-3807-6.

[34]

D. Lüst and S. Theisen, Lectures on String Theory,, Lecture Notes in Physics, 346 (1989).

[35]

M. Łukasik, Rachunek Wariacyjny Niezale.zny od Parametryzacji. Przypadek Jednowymiarowy (Polish),, PhD Thesis, (2012).

[36]

G. Martin, A Darboux theorem for multi-symplectic manifolds,, Lett. Math. Phys., 16 (1988), 133. doi: 10.1007/BF00402020.

[37]

G. Pidello and W. Tulczyjew, Derivations of differential forms on jet bundles,, Ann. Mat. Pura Appl., 147 (1987), 249. doi: 10.1007/BF01762420.

[38]

J. Pradines, Représentation des jets non holonomes par des morphismes vectoriels doubles soudés,, C. R. Acad. Sci. Paris, 278 (1974), 1523.

[39]

D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids,, in Quantization, 315 (2001), 169. doi: 10.1090/conm/315/05479.

[40]

G. Sardanashvily, Lagrangian dynamics of submanifolds. Relativistic mechanics,, J. Geom. Mech., 4 (2012), 99. doi: 10.3934/jgm.2012.4.99.

[41]

P. Ševera, Some title containing the words "homotopy" and "symplectic", e.g. this one,, Travaux mathématiques, 16 (2005), 121.

[42]

W. Tulczyjew, Hamiltonian systems, Lagrangian systems, and the Legendre transformation,, Symposia Math., 14 (1974), 247.

[43]

W. M. Tulczyjew, The Legendre transformation,, Ann. Inst. H. Poincaré Sect. A (N.S.), 27 (1977), 101.

[44]

W. M. Tulczyjew, A symplectic framework for linear field theories,, Ann. Mat. Pura Appl., 130 (1982), 177. doi: 10.1007/BF01761494.

[45]

W. M. Tulczyjew, Geometric Formulation of Physical Theories,, Bibliopolis, (1989).

[46]

W. M. Tulczyjew and P. Urbański, A slow and careful Legendre transformation for singular Lagrangians,, The Infeld Centennial Meeting (Warsaw, 30 (1999), 2909.

[47]

L. Vitagliano, Partial differential Hamiltonian systems,, Cand. J. Math., 65 (2013), 1164. doi: 10.4153/CJM-2012-055-0.

[48]

P. Urbański, Double vector bundles in classical mechanics,, Rend. Sem. Matem. Torino, 54 (1996), 405.

[49]

T. T. Voronov, Graded manifolds and Drienfeld doubles for Lie bialgebroids,, in Quantization, 315 (2001), 131. doi: 10.1090/conm/315/05478.

[50]

Y. Xin, Minimal Submanifolds and Related Topics,, Nankai Tracts in Mathematics 8, 8 (2003). doi: 10.1142/9789812564382.

show all references

References:
[1]

C. Buttin, Théorie des opérateurs différentiels gradués sur les formes différentielles,, Bull. Soc. Math. France, 102 (1974), 49.

[2]

F. Cantrijn, L. A. Ibort and M. De Leon, Hamiltonian structures on multisymplectic manifolds,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 225.

[3]

C. M. Campos, E. Guzmán and J. C. Marrero, Classical field theories of first order and lagrangian submanifolds of premultisymplectic manifolds,, J. Geom. Mech., 4 (2012), 1. doi: 10.3934/jgm.2012.4.1.

[4]

J. F. Cariñena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order theories,, Differential Geom. Appl., 1 (1991), 345. doi: 10.1016/0926-2245(91)90013-Y.

[5]

A. Echeverría-Enríquez and M. C. Muñoz-Lecanda, Geometry of multisymplectic Hamiltonian first order theory,, J. Math. Phys., 41 (2000), 7402. doi: 10.1063/1.1308075.

[6]

L. E. Evans, Partial Differential Equations,, Graduate Studies in Mathematics 19, 19 (1998).

[7]

M. Forger, C. Paufler and H. Römer, A general construction of Poisson brackets on exact multisymplectic manifolds,, Rep. Math. Phys., 51 (2003), 187. doi: 10.1016/S0034-4877(03)80012-5.

[8]

M. Forger, C. Paufler and H. Römer, Hamiltonian multivector fields and Poisson forms in multisymplectic field theories,, J. Math. Phys., 46 (2005), 112903. doi: 10.1063/1.2116320.

[9]

M. Forger and L. G. Gomes, Multisymplectic and polysymplectic structures on fiber bundles,, Rev. Math. Phys., 25 (2013). doi: 10.1142/S0129055X13500189.

[10]

K. Gawędzki, On the geometrization of the canonical formalism in the classical field theory,, Rep. Math. Phys., 3 (1972), 307. doi: 10.1016/0034-4877(72)90014-6.

[11]

G. Giachetta and L. Mangiarotti, Constrained Hamiltonian Systems and Gauge Theories,, Int. J. Theor. Phys., 34 (1995), 2353. doi: 10.1007/BF00670772.

[12]

G. Giachetta, L. Mangiarotti and G. A. Sardanashvili, Advanced Classical Field Theory,, World Scientific, (2009). doi: 10.1142/9789812838964.

[13]

M. J. Gotay, J. Isenberg and J. E. Marsden, Momentum maps and classical relativistic fields, Part I: Covariant field theory,, preprint, ().

[14]

M. J. Gotay, J. Isenberg and J. E. Marsden, Momentum maps and classical relativistic fields, Part II: Canonical analysis of field theories,, preprint, ().

[15]

K. Grabowska, The Tulczyjew triple for classical fields,, J. Phys. A, 45 (2012), 145207. doi: 10.1088/1751-8113/45/14/145207.

[16]

K. Grabowska, Lagrangian and Hamiltonian formalism in field theory: A simple model,, J. Geom. Mech., 2 (2010), 375. doi: 10.3934/jgm.2010.2.375.

[17]

K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids,, J. Phys. A: Math. Theor., 41 (2008). doi: 10.1088/1751-8113/41/17/175204.

[18]

K. Grabowska and J. Grabowski, Dirac algebroids in Lagrangian and Hamiltonian mechanics,, J. Geom. Phys., 61 (2011), 2233. doi: 10.1016/j.geomphys.2011.06.018.

[19]

K. Grabowska and J. Grabowski, Tulczyjew triples: From statics to field theory,, J. Geom. Mech., 5 (2013), 445. doi: 10.3934/jgm.2013.5.445.

[20]

K. Grabowska, J. Grabowski and P. Urbański, Geometrical Mechanics on algebroids,, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 559. doi: 10.1142/S0219887806001259.

[21]

J. Grabowski, Brakets,, Int. J. Geom. Methods Mod. Phys. 10 (2013), 10 (2013). doi: 10.1142/S0219887813600013.

[22]

J. Grabowski and M. Rotkiewicz, Higher vector bundles and multi-graded symplectic manifolds,, J. Geom. Phys., 59 (2009), 1285. doi: 10.1016/j.geomphys.2009.06.009.

[23]

J. Grabowski and M. Rotkiewicz, Graded bundles and homogeneity structures,, J.Geom. Phys., 62 (2012), 21. doi: 10.1016/j.geomphys.2011.09.004.

[24]

J. Grabowski and P. Urbański, Tangent lifts of Poisson and related structures,, J. Phys. A, 28 (1995), 6743. doi: 10.1088/0305-4470/28/23/024.

[25]

J. Grabowski and P. Urbański, Algebroids - general differential calculi on vector bundles,, J. Geom. Phys., 31 (1999), 111. doi: 10.1016/S0393-0440(99)00007-8.

[26]

C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations. I. The local case,, J. Differential Geom., 25 (1987), 23.

[27]

J. Kijowski and W. Szczyrba, A canonical structure for classical field theories,, Commun. Math. Phys., 46 (1976), 183. doi: 10.1007/BF01608496.

[28]

J. Kijowski and W. M. Tulczyjew, A Symplectic Framework for Field Theories,, Lecture Notes in Physics, (1979).

[29]

I. Kolář and J. Tomáš, Gauge-natural transformations of some cotangent bundles,, Acta Univ. M. Belii ser. Mathematics, 5 (1997), 3.

[30]

K. Konieczna and P. Urbański, Double vector bundles and duality,, Arch. Math. (Brno), 35 (1999), 59.

[31]

O. Krupková, Hamiltonian field theory,, J. Geom. Phys. 43 (2002), 43 (2002), 93. doi: 10.1016/S0393-0440(01)00087-0.

[32]

M. de León, D. Martín de Diego and A. Santamaría-Merino, Tulczyjew's triples and lagrangian submanifolds in classical field theories,, in Applied Differential Geometry and Mechanics (eds. W. Sarlet and F. Cantrijn), (2003), 21.

[33]

P. Libermann and C. M. Marle, Symplectic Geometry and Analytical Mechanics,, Translated from the French by Bertram Eugene Schwarzbach. Mathematics and its Applications, (1987). doi: 10.1007/978-94-009-3807-6.

[34]

D. Lüst and S. Theisen, Lectures on String Theory,, Lecture Notes in Physics, 346 (1989).

[35]

M. Łukasik, Rachunek Wariacyjny Niezale.zny od Parametryzacji. Przypadek Jednowymiarowy (Polish),, PhD Thesis, (2012).

[36]

G. Martin, A Darboux theorem for multi-symplectic manifolds,, Lett. Math. Phys., 16 (1988), 133. doi: 10.1007/BF00402020.

[37]

G. Pidello and W. Tulczyjew, Derivations of differential forms on jet bundles,, Ann. Mat. Pura Appl., 147 (1987), 249. doi: 10.1007/BF01762420.

[38]

J. Pradines, Représentation des jets non holonomes par des morphismes vectoriels doubles soudés,, C. R. Acad. Sci. Paris, 278 (1974), 1523.

[39]

D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids,, in Quantization, 315 (2001), 169. doi: 10.1090/conm/315/05479.

[40]

G. Sardanashvily, Lagrangian dynamics of submanifolds. Relativistic mechanics,, J. Geom. Mech., 4 (2012), 99. doi: 10.3934/jgm.2012.4.99.

[41]

P. Ševera, Some title containing the words "homotopy" and "symplectic", e.g. this one,, Travaux mathématiques, 16 (2005), 121.

[42]

W. Tulczyjew, Hamiltonian systems, Lagrangian systems, and the Legendre transformation,, Symposia Math., 14 (1974), 247.

[43]

W. M. Tulczyjew, The Legendre transformation,, Ann. Inst. H. Poincaré Sect. A (N.S.), 27 (1977), 101.

[44]

W. M. Tulczyjew, A symplectic framework for linear field theories,, Ann. Mat. Pura Appl., 130 (1982), 177. doi: 10.1007/BF01761494.

[45]

W. M. Tulczyjew, Geometric Formulation of Physical Theories,, Bibliopolis, (1989).

[46]

W. M. Tulczyjew and P. Urbański, A slow and careful Legendre transformation for singular Lagrangians,, The Infeld Centennial Meeting (Warsaw, 30 (1999), 2909.

[47]

L. Vitagliano, Partial differential Hamiltonian systems,, Cand. J. Math., 65 (2013), 1164. doi: 10.4153/CJM-2012-055-0.

[48]

P. Urbański, Double vector bundles in classical mechanics,, Rend. Sem. Matem. Torino, 54 (1996), 405.

[49]

T. T. Voronov, Graded manifolds and Drienfeld doubles for Lie bialgebroids,, in Quantization, 315 (2001), 131. doi: 10.1090/conm/315/05478.

[50]

Y. Xin, Minimal Submanifolds and Related Topics,, Nankai Tracts in Mathematics 8, 8 (2003). doi: 10.1142/9789812564382.

[1]

Katarzyna Grabowska. Lagrangian and Hamiltonian formalism in Field Theory: A simple model. Journal of Geometric Mechanics, 2010, 2 (4) : 375-395. doi: 10.3934/jgm.2010.2.375

[2]

Marcel Oliver, Sergiy Vasylkevych. Hamiltonian formalism for models of rotating shallow water in semigeostrophic scaling. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 827-846. doi: 10.3934/dcds.2011.31.827

[3]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[4]

Katarzyna Grabowska, Luca Vitagliano. Tulczyjew triples in higher derivative field theory. Journal of Geometric Mechanics, 2015, 7 (1) : 1-33. doi: 10.3934/jgm.2015.7.1

[5]

Katarzyna Grabowska, Janusz Grabowski. Tulczyjew triples: From statics to field theory. Journal of Geometric Mechanics, 2013, 5 (4) : 445-472. doi: 10.3934/jgm.2013.5.445

[6]

Vaughn Climenhaga. A note on two approaches to the thermodynamic formalism. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 995-1005. doi: 10.3934/dcds.2010.27.995

[7]

Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1

[8]

Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1/2) : 131-164. doi: 10.3934/dcds.2008.22.131

[9]

Yongluo Cao, De-Jun Feng, Wen Huang. The thermodynamic formalism for sub-additive potentials. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 639-657. doi: 10.3934/dcds.2008.20.639

[10]

Anna Mummert. The thermodynamic formalism for almost-additive sequences. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 435-454. doi: 10.3934/dcds.2006.16.435

[11]

Imen Bhouri, Houssem Tlili. On the multifractal formalism for Bernoulli products of invertible matrices. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1129-1145. doi: 10.3934/dcds.2009.24.1129

[12]

Luis Barreira. Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 279-305. doi: 10.3934/dcds.2006.16.279

[13]

Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Corrigendum to: Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 593-594. doi: 10.3934/dcds.2015.35.593

[14]

Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004

[15]

Jordan Emme. Hermodynamic formalism and k-bonacci substitutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3701-3719. doi: 10.3934/dcds.2017157

[16]

Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399

[17]

Gerhard Keller. Stability index, uncertainty exponent, and thermodynamic formalism for intermingled basins of chaotic attractors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 313-334. doi: 10.3934/dcdss.2017015

[18]

Renaud Leplaideur. From local to global equilibrium states: Thermodynamic formalism via an inducing scheme. Electronic Research Announcements, 2014, 21: 72-79. doi: 10.3934/era.2014.21.72

[19]

Vaughn Climenhaga. Multifractal formalism derived from thermodynamics for general dynamical systems. Electronic Research Announcements, 2010, 17: 1-11. doi: 10.3934/era.2010.17.1

[20]

Grégory Faye, Pascal Chossat. A spatialized model of visual texture perception using the structure tensor formalism. Networks & Heterogeneous Media, 2013, 8 (1) : 211-260. doi: 10.3934/nhm.2013.8.211

2016 Impact Factor: 0.857

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (3)

[Back to Top]