Citation: |
[1] |
A. J. Bruce, K. Grabowska and J. Grabowski, Linear duals of graded bundles and higher analogues of (Lie) algebroids, preprint, arXiv:1409.0439 (2014). |
[2] |
A. J. Bruce, K. Grabowska and J. Grabowski, Higher order mechanics on graded bundles, J. Phys. A: Math. Theor., 48 (2015), 205203.doi: 10.1088/1751-8113/48/20/205203. |
[3] |
F. Cantrijn, M. Crampin, W. Sarlet and D. Saunders, The canonical isomorphism between $\T^k \T^* M$ and $\T^*\T^kM$, C. R. Acad. Sci. Paris, 309 (1989), 1509-1514. |
[4] |
L. Colombo and D. M. de Diego, A Variational and Geometric Approach for the Second Order Euler-Poinaré Equations, lecture notes, Zaragoza, 2011. |
[5] |
J. Cortes, M. de Leon, J. C. Marrero, D. Martin de Diego and E. Martínez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 509-558.doi: 10.1142/S0219887806001211. |
[6] |
M. Crainic and R. L. Fernendes, Integrability of Lie brackets, Ann. of Math., 157 (2003), 575-620.doi: 10.4007/annals.2003.157.575. |
[7] |
J. P. Dufour, Introduction aux tissus, in Séminaire Gaston Darboux de Géométrie et Topologie Différentielle, 1990/1991 (Montpellier, 1990/1991), Univ. Montpellier II, (1992), 55-76. |
[8] |
F. Gay-Balmaz, D. D. Holm, D. M. Meier, T. S. Ratiu and F. Vialard, Invariant Higher-Order Variational Problems, Comm. Math. Phys., 309 (2012), 413-458.doi: 10.1007/s00220-011-1313-y. |
[9] |
A. Gracia-Saz and R. A. Mehta, Lie algebroid structures on double vector bundles and representation theory of Lie algebroids, Adv. Math., 223 (2010), 1236-1275.doi: 10.1016/j.aim.2009.09.010. |
[10] |
K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A: Math. Theor., 41 (2008), 175204, 25pp.doi: 10.1088/1751-8113/41/17/175204. |
[11] |
K. Grabowska, J. Grabowski and P. Urbański, Geometric mechanics on algebroids, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 559-575.doi: 10.1142/S0219887806001259. |
[12] |
K. Grabowska and L. Vitagliano, Tulczyjew triples in higher derivative field theory, J. Geom. Mech., 7 (2015), 1-33.doi: 10.3934/jgm.2015.7.1. |
[13] |
J. Grabowski and M. Jóźwikowski, Pontryagin maximum principle on almost lie algebroids, SIAM J. Control Optim., 49 (2011), 1306-1357.doi: 10.1137/090760246. |
[14] |
J. Grabowski, M. de Leon, J. C. Marrero and D. Martin de Diego, Nonholonomic Constraints: A New Viewpoint, J. Math. Phys., 50 (2009), 013520, 17pp.doi: 10.1063/1.3049752. |
[15] |
J. Grabowski and M. Rotkiewicz, Graded bundles and homogeneity structures, J. Geom. Phys., 62 (2011), 21-36.doi: 10.1016/j.geomphys.2011.09.004. |
[16] |
J. Grabowski and M. Rotkiewicz, Higher vector bundles and multi-graded symplectic manifolds, J. Geom. Phys., 59 (2009), 1285-1305.doi: 10.1016/j.geomphys.2009.06.009. |
[17] |
J. Grabowski and P. Urbański, Lie algebroids and Poisson-Nijenhuis structures, Rep. Math. Phys., 40 (1997), 195-208.doi: 10.1016/S0034-4877(97)85916-2. |
[18] |
J. Grabowski and P. Urbański, Algebroids - general differential calculi on vector bundles, J. Geom. Phys., 31 (1999), 111-141.doi: 10.1016/S0393-0440(99)00007-8. |
[19] |
X. Gracia, J. Martin-Solano and M. Munoz-Lecenda, Some geometric aspects of variational calculus in constrained systems, Rep. Math. Phys., 51 (2003), 127-148.doi: 10.1016/S0034-4877(03)80006-X. |
[20] |
M. Jóźwikowski, Optimal Control Theory on Almost-Lie Algebroids, PhD thesis, arXiv:1111.1549 (2011). |
[21] |
M. Jóźwikowski, Jacobi vector fields for Lagrangian systems on algebroids, Int. J. Geom. Methods Mod. Phys., 10 (2013). |
[22] |
M. Jóźwikowski and M. Rotkiewicz, Bundle-theoretic methods in higher-order variational calculus, J. Geom. Mech., 6 (2014), 99-120.doi: 10.3934/jgm.2014.6.99. |
[23] |
M. Jóźwikowski and M. Rotkiewicz, Prototypes of higher algebroids with applications to variational calculus, preprint, arXiv:1306.3379 (2013). |
[24] |
M. Jóźwikowski and M. Rotkiewicz, Abstract higher algebroids, in preparation, 2014. |
[25] |
M. Jóźwikowski and M. Rotkiewicz, Variational calculus on higher algebroids, in preparation, 2014. |
[26] |
I. Kolar, Weil bundles as generalized jet spaces, in Handbook of Global Analysis, Elsevier, Amsterdam, 1214 (2008), 625-664.doi: 10.1016/B978-044452833-9.50013-9. |
[27] |
I. Kolar, P. W. Michor and J. Slovak, Natural Operations in Differential Geometry, Springer, Berlin, 1993.doi: 10.1007/978-3-662-02950-3. |
[28] |
M. de Leon, JC. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen., 38 (2005), 241-308.doi: 10.1088/0305-4470/38/24/R01. |
[29] |
K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J., 73 (1994), 415-452,doi: 10.1215/S0012-7094-94-07318-3. |
[30] |
K. Mackenzie, General Theory of Lie groupoids and Lie Algebroids, Cambridge University Press, Cambridge, 2005.doi: 10.1017/CBO9781107325883. |
[31] |
E. Martínez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67 (2001), 295-320.doi: 10.1023/A:1011965919259. |
[32] |
E. Martínez, Geometric formulation of mechanics on Lie algebroids, in Proceedings of the VIII Fall Workshop on Geometry and Physics, Medina del Campo, 1999, Publicaciones de la RSME, 2 (2001), 209-222. |
[33] |
E. Martínez, Variational calculus on Lie algebroids, ESAIM: Control, Optimization and Calculus of Variations, 14 (2008), 356-380.doi: 10.1051/cocv:2007056. |
[34] |
E. Martínez, Lie algebroids in classical mechanics and optimal control, SIGMA, 3 (2007), Paper 050, 17 pp.doi: 10.3842/SIGMA.2007.050. |
[35] |
E. Martínez, Higher-order variational calculus on Lie algebroids, J. Geom. Mech., 7 (2015), 81-108.doi: 10.3934/jgm.2015.7.81. |
[36] |
A. Morimoto, Liftings of tensor fields and connections to tangent bundles of higher order, Nagoya Math. J., 40 (1970), 99-120. |
[37] |
D. J. Saunders, Prolongations of Lie groupoids and Lie algebroids, Houston J. Math., 30 (2004), 637-655. |
[38] |
W. Tulczyjew, The Lagrange differential, Bull. Acad. Polon. Sci., 24 (1976), 1089-1096. |
[39] |
Th.Th. Voronov, Q-manifolds and higher analogs of Lie algebroids, AIP Conf. Proc., 1307 (2010), 191-202. |
[40] |
Th. Th. Voronov, Microformal geometry, preprint, (2014), arXiv:1411.6720. |
[41] |
A. Weil, Théorie des points proches sur les varietes différentiables, in: Colloque de géométrie différentielle, CNRS, Strasbourg, 1953 (1953), 111-117. |
[42] |
A. Weinstein, Lagrangian mechanics and groupoids, Fields Inst. Comm., 7 (1996), 207-231. |
[43] |
S. Zakrzewski, Quantum and classical pseudogroups. Part I. Union pseudogroups and their quantization, Comm. Math. Phys., 134 (1990), 347-370.doi: 10.1007/BF02097707. |
[44] |
S. Zakrzewski, Quantum and classical pseudogroups. Part II. Differential and symplectic pseudogroups, Comm. Math. Phys., 134 (1990), 371-395.doi: 10.1007/BF02097706. |