\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The emergence of torsion in the continuum limit of distributed edge-dislocations

Abstract / Introduction Related Papers Cited by
  • We present a rigorous homogenization theorem for distributed edge-dislocations. We construct a sequence of locally-flat 2D Riemannian manifolds with dislocation-type singularities. We show that this sequence converges, as the dislocations become denser, to a flat non-singular Weitzenböck manifold, i.e. a flat manifold endowed with a metrically-consistent connection with zero curvature and non-zero torsion. In the process, we introduce a new notion of convergence of Weitzenböck manifolds, which is relevant to this class of homogenization problems.
    Mathematics Subject Classification: Primary: 53Z05; Secondary: 58K99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    I. Agricola and C. Thier, The geodesics of metric connections with vectorial torsion, Ann. Global Anal. Geom., 26 (2004), 321-332.doi: 10.1023/B:AGAG.0000047509.63818.4f.

    [2]

    B. Bilby, R. Bullough and E. Smith, Continuous distributions of dislocations: A new application of the methods of Non-Riemannian geometry, Proc. Roy. Soc. A, 231 (1955), 263-273.doi: 10.1098/rspa.1955.0171.

    [3]

    B. Bilby and E. Smith, Continuous distributions of dislocations. III, Proc. Roy. Soc. Edin. A, 236 (1956), 481-505.doi: 10.1098/rspa.1956.0150.

    [4]

    M. Do Carmo, Riemannian Geometry, Birkhäuser, 1992.

    [5]

    D. J. H. Garling, Inequalities: A Journey into Linear Analysis, Cambridge University Press, 2007.doi: 10.1017/CBO9780511755217.

    [6]

    J. Guven, J. Hanna, O. Kahraman and M. Müller, Dipoles in thin sheets, Eur. Phys. J. E, 36 (2013), p106.doi: 10.1140/epje/i2013-13106-0.

    [7]

    J. Heinonen, Lectures on Lipschitz Analysis, Jyväskylän Yliopistopaino, 2005.

    [8]

    K. Kondo, Geometry of elastic deformation and incompatibility, in Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry (ed. K. Kondo), 1 (1955), 5-17.

    [9]

    E. Kroner, The Physics of Defects, in Les Houches Summer School Proceedings (eds. R. Balian, M. Kleman and J.-P. Poirier), North-Holland, Amsterdam, 1981.

    [10]

    R. Kupferman, M. Moshe and J. Solomon, Metric description of defects in amorphous materials, Arch. Rat. Mech. Anal., 216 (2015), 1009-1047.

    [11]

    J. Nye, Some geometrical relations in dislocated crystals, Acta Met., 1 (1953), 153-162.doi: 10.1016/0001-6160(53)90054-6.

    [12]

    A. Ozakin and A. Yavari, Affine development of closed curves in Weitzenböck manifolds and the burgers vector of dislocation mechanics, Math. Mech. Solids, 19 (2014), 299-307.doi: 10.1177/1081286512463720.

    [13]

    P. Petersen, Riemannian Geometry, 2nd edition, Springer, 2006.

    [14]

    H. Seung and D. Nelson, Defects in flexible membranes with crystalline order, Phys. Rev. A, 38 (1988), 1005-1018.doi: 10.1103/PhysRevA.38.1005.

    [15]

    V. Volterra, Sur l'équilibre des corps élastiques multiplement connexes, Ann. Sci. Ecole Norm. Sup. Paris 1907, 24 (1907), 401-518.

    [16]

    C.-C. Wang, On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations, Arch. Rat. Mech. Anal., 27 (1967), 33-94.doi: 10.1007/BF00276434.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(83) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return