Citation: |
[1] |
A. Banyaga, The Structure of Classical Diffeomorphism Groups, volume 400 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1997.doi: 10.1007/978-1-4757-6800-8. |
[2] |
D. W. Barnes, Nilpotency of Lie algebras, Math. Zeitschr., 79 (1962), 237-238.doi: 10.1007/BF01193118. |
[3] |
M. Berg, C. DeWitt-Morette, S. Gwo and E. Kramer, The pin groups in physics: C, P and T, Rev. Math. Phys., 13 (2001), 953-1034.doi: 10.1142/S0129055X01000922. |
[4] |
M. Crainic and R. L. Fernandes, Integrability of Lie brackets, Ann. of Math., 157 (2003), 575-620.doi: 10.4007/annals.2003.157.575. |
[5] |
D. B. A. Epstein and W. P. Thurston, Transformation groups and natural bundles, Proc. London Math. Soc., 38 (1979), 219-236.doi: 10.1112/plms/s3-38.2.219. |
[6] |
D. B. Fuks, Cohomology of Infinite Dimensional Lie Algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986. |
[7] |
H. Glöckner, Differentiable mappings between spaces of sections, 2002. arXiv:1308.1172. |
[8] |
J. Grabowski, A. Kotov and N. Poncin, Geometric structures encoded in the Lie structure of an Atiyah algebroid, Transform. Groups, 16 (2011), 137-160.doi: 10.1007/s00031-011-9126-9. |
[9] |
J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Springer-Verlag, New York, 1972. |
[10] |
A. W. Knapp, Lie Groups Beyond an Introduction, Birkhäuser, Boston, first edition, 1996.doi: 10.1007/978-1-4757-2453-0. |
[11] |
H. B. Lawson and M.-L. Michelsohn, Spin geometry, Princeton University Press, second edition, 1994. |
[12] |
P. B. A. Lecomte, Sur la suite exacte canonique associée à un fibré principal, Bulletin de la S. M. F., 113 (1985), 259-271. |
[13] |
K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, volume 124 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1987.doi: 10.1017/CBO9780511661839. |
[14] |
I. Moerdijk and J. Mrčun, On integrability of infinitesimal actions, Amer. J. Math., 124 (2002), 567-593.doi: 10.1353/ajm.2002.0019. |
[15] |
S. Morrison, Classifying Spinor Structures, Master's thesis, University of New South Wales, 2001. |
[16] |
K. C. H. Mackenzie and P. Xu, Integration of Lie bialgebroids, Topology, 39 (2000), 445-467.doi: 10.1016/S0040-9383(98)00069-X. |
[17] |
A. Nijenhuis, Theory of the Geometric Object, 1952. Doctoral thesis, Universiteit van Amsterdam. |
[18] |
A. Nijenhuis, Geometric aspects of formal differential operations on tensors fields, In Proc. Internat. Congress Math. 1958, pages 463-469. Cambridge Univ. Press, New York, 1960. |
[19] |
A. Nijenhuis, Natural bundles and their general properties. Geometric objects revisited, In Differential geometry (in honor of Kentaro Yano), pages 317-334. Kinokuniya, Tokyo, 1972. |
[20] |
R. S. Palais and C. L. Terng, Natural bundles have finite order, Topology, 19 (1977), 271-277. |
[21] |
J. Peetre, Réctification (sic) à l'article «une caractérisation abstraite des opérateurs différentiels», Math. Scand., 8 (1960), 116-120. |
[22] |
J. Pradines, Théorie de Lie pour les groupoides différentiables, relation entre propriétés locales et globales, Comptes Rendus Acad. Sci. Paris A, 263 (1966), 907-910. |
[23] |
S. E. Salvioli, On the theory of geometric objects, J. Diff. Geom., 7 (1972), 257-278. |
[24] |
J. A. Schouten and J. Haantjes, On the Theory of the Geometric Object, Proc. London Math. Soc., S2-42 (1937), 356-376.doi: 10.1112/plms/s2-42.1.356. |
[25] |
M. E. Shanks and L. E. Pursell, The Lie algebra of a smooth manifold, Proc. Amer. Math. Soc., 5 (1954), 468-472.doi: 10.1090/S0002-9939-1954-0064764-3. |
[26] |
Kōji Shiga and Toru Tsujishita, Differential representations of vector fields, Kōdai Math. Sem. Rep., 28 (1976/77), 214-225. |
[27] |
F. Takens, Derivations of vector fields, Comp. Math., 26 (1973), 151-158. |
[28] |
C. L. Terng, Natural vector bundles and natural differential operators, Am. J. Math., 100 (1978), 775-828.doi: 10.2307/2373910. |
[29] |
A. Wundheiler, Objekte, Invarianten und Klassifikation der Geometrie, Abh. Sem. Vektor Tenzoranal. Moskau, 4 (1937), 366-375. |