March 2018, 10(1): 1-41. doi: 10.3934/jgm.2018001

Lagrange-d'alembert-poincaré equations by several stages

Departamento de Matemática, Universidad Nacional del Sur, Av. Alem 1253,8000 Bahía Blanca, Argentina

Received  June 2014 Revised  June 2017 Published  December 2017

The aim of this paper is to write explicit expression in terms of a given principal connection of the Lagrange-d'Alembert-Poincaré equations by several stages. This is obtained by using a reduced Lagrange-d'Alembert's Principle by several stages, extending methods known for the case of one stage in the previous literature. The case of Euler's disk is described as an illustrative example.

Citation: Hernán Cendra, Viviana A. Díaz. Lagrange-d'alembert-poincaré equations by several stages. Journal of Geometric Mechanics, 2018, 10 (1) : 1-41. doi: 10.3934/jgm.2018001
References:
[1]

R. Abraham and J. E. Marsden, Foundation of Mechanics, Addison Wesley, second edition, 1978.

[2]

V. I. Arnold, Mathematical Methods of Classical Mechanics, volume60 of Graduate Texts in Mathematics. Springer Verlag, second edition, 1989.

[3]

L. BatesH. Graumann and C. MacDonnell, Examples of Gauge conservation laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295-308. doi: 10.1016/0034-4877(96)84069-9.

[4]

L. Bates and J. Sniatycki, Nonholonomic reduction, Reports on Math. Phys., 32 (1993), 99-115. doi: 10.1016/0034-4877(93)90073-N.

[5]

A. M. Bloch, Nonholonomic Mechanics and Control, volume24 of Interdisciplinary Applied Mathematics. Springer Verlag, 2003.

[6]

A. M. BlochJ. E. KrishnaprasadJ. E. Marsden and R. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rat. Mech. An., 136 (1996), 21-99. doi: 10.1007/BF02199365.

[7]

F. CantrijnM. deLeónJ. C. Marrero and D. Martín de Diego, Reduction of constrained systems with symmetries, J. Math. Phys., 40 (1999), 795-820. doi: 10.1063/1.532686.

[8]

J. J. Cariñena and M. F. Rañada, Lagrangian systems with constraints: A geometric approach to the method of Lagrange multipliers, J. Phys. A: Math. Gen., 26 (1993), 1335-1351. doi: 10.1088/0305-4470/26/6/016.

[9]

H. Cendra and V. A. Díaz, The Lagrange-d'Alembert-Poincaré equations and integrability for the Euler's disk, Regular and Chaotic Dynamics, 12 (2007), 56-67. doi: 10.1134/S1560354707010054.

[10]

H. CendraJ. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction and nonholonomic systems, Mathematics Unlimited and Beyond, Springer, (2001), 221-273.

[11]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Memoirs of the AMS, 152 (2001), x+108 pp.

[12]

H. Cendra, J. E. Marsden, T. S. Ratiu and H. Yoshimura, Dirac-Weinstein reduction of Dirac anchored vector bundles, 2009, preprint.

[13]

J. CortésM. l deLeónJ.C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete Contin. Dyn. Syst., 24 (2009), 213-271. doi: 10.3934/dcds.2009.24.213.

[14]

M. deLeón and D. Martínde Diego, On the geometry of non-holonomic Lagrangian systems, J. Math. Phys., 37 (1996), 3389-3414. doi: 10.1063/1.531571.

[15]

M. deLeónJ.C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A, 38 (2005), R241-R308.

[16]

K. EhlersJ. KoillerR. Montgomery and P. M. Ríos, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization, The Breath of symplectic and Poisson geometry. Prog. Math., 232 (2005), 75-120.

[17]

R. L. Fernandes, Lie algebroids, holonomy and characteristic classes, Adv. Math., 170 (2002), 119-179.

[18]

D.D. HolmJ.E. Marsden and T.S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.

[19]

W. S. Koon and J. E. Marsden, Optimal control for holonomic and nonholonomic mechanical systems with syummetry and Lagrangian reduction, SIAM J. Control Optim., 35 (1997), 901-929.

[20]

Ch.M. Marle, Reduction of constrained mechanical systems and stability of relative equilibria, Commun. Math. Phys., 174 (1995), 295-318.

[21]

Ch.M. Marle, Various approaches to conservative and nonconservative nonholonomic systems, Rep. Math. Phys., 42 (1998), 211-229.

[22]

J. E. Marsden, G. Misiolek, J. P. Ortega, M. Perlmutter and T. S. Ratiu, Hamiltonian Reduction by Stages Number 1913 in Hamiltonian Reduction by Stages. Springer, 2007.

[23]

J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, volume17. Springer-Verlag, New York, 1994. Second edition, 1999.

[24]

T. Mestdag, Lagrangian reduction by stages for non-holonomic systems in a Lie algebroid framework, J. Phys. A, 38 (2005), 10157-10179.

[25]

J. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems, Translations of the American Mathematical Society, Providence, Rhode Island, 1972.

[26]

A. M. Vershik, Classical and Non-Classical Dynamics with Constraints, volume 1108 of Global Analysis-Studies and Applications I. Lecture Notes in Mathematics. Springer, 2002.

[27]

A. M. Vershik and L. D. Faddeev, Differential geometry and Lagrangian mechanics with constraints, Sov. Phys. Dokl., 17 (1972), 34-36.

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundation of Mechanics, Addison Wesley, second edition, 1978.

[2]

V. I. Arnold, Mathematical Methods of Classical Mechanics, volume60 of Graduate Texts in Mathematics. Springer Verlag, second edition, 1989.

[3]

L. BatesH. Graumann and C. MacDonnell, Examples of Gauge conservation laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295-308. doi: 10.1016/0034-4877(96)84069-9.

[4]

L. Bates and J. Sniatycki, Nonholonomic reduction, Reports on Math. Phys., 32 (1993), 99-115. doi: 10.1016/0034-4877(93)90073-N.

[5]

A. M. Bloch, Nonholonomic Mechanics and Control, volume24 of Interdisciplinary Applied Mathematics. Springer Verlag, 2003.

[6]

A. M. BlochJ. E. KrishnaprasadJ. E. Marsden and R. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rat. Mech. An., 136 (1996), 21-99. doi: 10.1007/BF02199365.

[7]

F. CantrijnM. deLeónJ. C. Marrero and D. Martín de Diego, Reduction of constrained systems with symmetries, J. Math. Phys., 40 (1999), 795-820. doi: 10.1063/1.532686.

[8]

J. J. Cariñena and M. F. Rañada, Lagrangian systems with constraints: A geometric approach to the method of Lagrange multipliers, J. Phys. A: Math. Gen., 26 (1993), 1335-1351. doi: 10.1088/0305-4470/26/6/016.

[9]

H. Cendra and V. A. Díaz, The Lagrange-d'Alembert-Poincaré equations and integrability for the Euler's disk, Regular and Chaotic Dynamics, 12 (2007), 56-67. doi: 10.1134/S1560354707010054.

[10]

H. CendraJ. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction and nonholonomic systems, Mathematics Unlimited and Beyond, Springer, (2001), 221-273.

[11]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Memoirs of the AMS, 152 (2001), x+108 pp.

[12]

H. Cendra, J. E. Marsden, T. S. Ratiu and H. Yoshimura, Dirac-Weinstein reduction of Dirac anchored vector bundles, 2009, preprint.

[13]

J. CortésM. l deLeónJ.C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete Contin. Dyn. Syst., 24 (2009), 213-271. doi: 10.3934/dcds.2009.24.213.

[14]

M. deLeón and D. Martínde Diego, On the geometry of non-holonomic Lagrangian systems, J. Math. Phys., 37 (1996), 3389-3414. doi: 10.1063/1.531571.

[15]

M. deLeónJ.C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A, 38 (2005), R241-R308.

[16]

K. EhlersJ. KoillerR. Montgomery and P. M. Ríos, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization, The Breath of symplectic and Poisson geometry. Prog. Math., 232 (2005), 75-120.

[17]

R. L. Fernandes, Lie algebroids, holonomy and characteristic classes, Adv. Math., 170 (2002), 119-179.

[18]

D.D. HolmJ.E. Marsden and T.S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.

[19]

W. S. Koon and J. E. Marsden, Optimal control for holonomic and nonholonomic mechanical systems with syummetry and Lagrangian reduction, SIAM J. Control Optim., 35 (1997), 901-929.

[20]

Ch.M. Marle, Reduction of constrained mechanical systems and stability of relative equilibria, Commun. Math. Phys., 174 (1995), 295-318.

[21]

Ch.M. Marle, Various approaches to conservative and nonconservative nonholonomic systems, Rep. Math. Phys., 42 (1998), 211-229.

[22]

J. E. Marsden, G. Misiolek, J. P. Ortega, M. Perlmutter and T. S. Ratiu, Hamiltonian Reduction by Stages Number 1913 in Hamiltonian Reduction by Stages. Springer, 2007.

[23]

J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, volume17. Springer-Verlag, New York, 1994. Second edition, 1999.

[24]

T. Mestdag, Lagrangian reduction by stages for non-holonomic systems in a Lie algebroid framework, J. Phys. A, 38 (2005), 10157-10179.

[25]

J. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems, Translations of the American Mathematical Society, Providence, Rhode Island, 1972.

[26]

A. M. Vershik, Classical and Non-Classical Dynamics with Constraints, volume 1108 of Global Analysis-Studies and Applications I. Lecture Notes in Mathematics. Springer, 2002.

[27]

A. M. Vershik and L. D. Faddeev, Differential geometry and Lagrangian mechanics with constraints, Sov. Phys. Dokl., 17 (1972), 34-36.

[1]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[2]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[3]

Gennadi Sardanashvily. Lagrangian dynamics of submanifolds. Relativistic mechanics. Journal of Geometric Mechanics, 2012, 4 (1) : 99-110. doi: 10.3934/jgm.2012.4.99

[4]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[5]

Sergio Grillo, Marcela Zuccalli. Variational reduction of Lagrangian systems with general constraints. Journal of Geometric Mechanics, 2012, 4 (1) : 49-88. doi: 10.3934/jgm.2012.4.49

[6]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[7]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[8]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[9]

L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395

[10]

Jan J. Sławianowski, Vasyl Kovalchuk, Agnieszka Martens, Barbara Gołubowska, Ewa E. Rożko. Essential nonlinearity implied by symmetry group. Problems of affine invariance in mechanics and physics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 699-733. doi: 10.3934/dcdsb.2012.17.699

[11]

Miguel Rodríguez-Olmos. Book review: Geometric mechanics and symmetry, by Darryl D. Holm, Tanya Schmah and Cristina Stoica. Journal of Geometric Mechanics, 2009, 1 (4) : 483-488. doi: 10.3934/jgm.2009.1.483

[12]

Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[13]

Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267

[14]

Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019

[15]

Jean-Claude Zambrini. Stochastic deformation of classical mechanics. Conference Publications, 2013, 2013 (special) : 807-813. doi: 10.3934/proc.2013.2013.807

[16]

Vieri Benci. Solitons and Bohmian mechanics. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 303-317. doi: 10.3934/dcds.2002.8.303

[17]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[18]

Jamie Cruz, Miguel Gutiérrez. Spiral motion in classical mechanics. Conference Publications, 2009, 2009 (Special) : 191-197. doi: 10.3934/proc.2009.2009.191

[19]

Cristina Stoica. An approximation theorem in classical mechanics. Journal of Geometric Mechanics, 2016, 8 (3) : 359-374. doi: 10.3934/jgm.2016011

[20]

Alain Miranville, Ulisse Stefanelli, Lev Truskinovsky, Augusto Visintin. Preface: Applications of mathematics to mechanics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : ⅰ-ⅱ. doi: 10.3934/dcdss.201701i

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (116)
  • HTML views (350)
  • Cited by (0)

Other articles
by authors

[Back to Top]