We show that the Navier-Stokes as well as a random perturbation of this equation can be derived from a stochastic variational principle where the pressure is introduced as a Lagrange multiplier. Moreover we describe how to obtain corresponding constants of the motion.
Citation: |
[1] | M. Arnaudon, X. Chen and A. B. Cruzeiro, Stochastic Euler-Poincaré reduction, J. Math. Physics, 55 (2014), 081507, 17 pp. doi: 10.1063/1.4893357. |
[2] | M. Arnaudon and A. B. Cruzeiro, Lagrangian Navier-Stokes diffusions on manifolds: Variational principle and stability, Bull. Sci. Math., 136 (2012), 857-881. doi: 10.1016/j.bulsci.2012.06.007. |
[3] | V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l' hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16 (1966), 316-361. doi: 10.5802/aif.233. |
[4] | X. Chen, A. B. Cruzeiro and T. Ratiu, Stochastic variational principles for dissipative equations with advected quantities, arXiv: 1506.05024. |
[5] | F. Cipriano and A. B. Cruzeiro, Navier-Stokes equations and diffusions on the group of homeomorphisms of the torus, Comm. Math. Phys., 275 (2007), 255-269. doi: 10.1007/s00220-007-0306-3. |
[6] | P. Constantin, Analysis of Hydrodynamic Models, CBMS-NSF Regional Conference Series in Applied Mathematics, 90. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2017. doi: 10.1137/1.9781611974805.ch1. |
[7] | A. B. Cruzeiro and R. Lassalle, Symmetries and martingales in a stochastic model for the Navier-Stokes equation, From Particle Systems to Partial Differential Equations. III, Springer Proc. Math. Stat., Springer, [Cham], 162 (2016), 185-194. doi: 10.1007/978-3-319-32144-8_9. |
[8] | A. B. Cruzeiro and G. P. Liu, A stochastic variational approach to the viscous Camassa-Holm and Leray-alpha equations, Stoch. Proc. and their Applic, 127 (2017), 1-19. doi: 10.1016/j.spa.2016.05.006. |
[9] | D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), 102-163. doi: 10.2307/1970699. |
[10] | G. L. Eyink, Stochastic least-action principle for the incompressible Navier-Stokes equation, Physica D, 239 (2010), 1236-1240. doi: 10.1016/j.physd.2008.11.011. |
[11] | D. D. Holm, The Euler-Poincaré variational framework for modeling fluid dynamics, Geometric Mechanics and Symmetry, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, 306 (2005), 157-209. doi: 10.1017/CBO9780511526367.004. |
[12] | D. D. Holm, Variational principles for stochastic fluid dynamics, Proc. Royal Soc. A, 471 (2015), 20140963, 10 pp. doi: 10.1098/rspa.2014.0963. |
[13] | N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam-New York, Kodansha, Ltd., Tokyo, 1981. |
[14] | H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, 24. Cambridge University Press, Cambridge, 1990. |
[15] | T. Nakagomi, K. Yasue and J.-C. Zambrini, Stochastic variational derivation of the Navier-Stokes equation, Lett. in Math. Phys., 5 (1981), 545-552. doi: 10.1007/BF00408137. |
[16] | R. Shankar, Symmetries and conservation laws of the Euler equation in Lagrangian coordinates, J. Math. Anal. and Appl., 447 (2017), 867-881. doi: 10.1016/j.jmaa.2016.10.057. |
[17] | M. Thieullen and J.-C. Zambrini, Probability and quantum symmetries Ⅰ. The theorem of Noether in Schroedinger's Euclidean quantum mechanics, Ann. Inst. Henri Poincaré, 67 (1997), 297-338. |
[18] | M. Thieullen and J.-C. Zambrini, Symmetries in the stochastic calculus of variations, Prob. Th. and Rel. Fields, 107 (1997), 401-427. doi: 10.1007/s004400050091. |
[19] | K. Yasue, A variational principle for the Navier-Stokes equation, J. Funct. Anal., 51 (1983), 133-141. doi: 10.1016/0022-1236(83)90021-6. |