- Previous Article
- JGM Home
- This Issue
-
Next Article
Continuous singularities in hamiltonian relative equilibria with abelian momentum isotropy
A summary on symmetries and conserved quantities of autonomous Hamiltonian systems
Departament of Mathematics. Universidad Politécnica de Cataluña, Edificio C-3, Campus Norte UPC. C/ Jordi Girona 1. 08034 Barcelona, Spain |
A complete geometric classification of symmetries of autonomous Hamiltonian systems is established; explaining how to obtain their associated conserved quantities in all cases. In particular, first we review well-known results and properties about the symmetries of the Hamiltonian and of the symplectic form and then some new kinds of non-symplectic symmetries and their conserved quantities are introduced and studied.
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, Second edition, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.
doi: 10.1090/chel/364. |
[2] |
A. Arancibia and M. S. Plyushchay, Chiral asymmetry in propagation of soliton defects in crystalline backgrounds, Phys. Rev. D, 92 (2015), 105009, 20 pp.
doi: 10.1103/PhysRevD.92.105009. |
[3] |
V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[4] |
P. Birtea and R. M. Tudoran, Non-Noether conservation laws, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1220004, 5 pp.
doi: 10.1142/S0219887812200046. |
[5] |
A. V. Bolsinov,
Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution, Math. USSR-Izvestiya, 38 (1992), 69-90.
doi: 10.1070/IM1992v038n01ABEH002187. |
[6] |
A. V. Bolsinov and A. V. Borisov,
Compatible Poisson brackets on Lie algebras, Math. Notes, 72 (2002), 10-30.
doi: 10.1023/A:1019856702638. |
[7] |
J. F. Cariñena and L. A. Ibort,
Non-Noether constants of motion, J. Phys. A, 16 (1983), 1-7.
doi: 10.1088/0305-4470/16/1/010. |
[8] |
J. F. Cariñena, G. Marmo and M. F. Rañada, Non-symplectic symmetries and bi-Hamiltonian structures of the rational harmonic oscillator, J. Phys. A, 35 (2002), L679–L686.
doi: 10.1088/0305-4470/35/47/101. |
[9] |
G. Chavchanidze,
Non-Noether symmetries and their influence on phase space geometry, J. Geom. Phys., 48 (2003), 190-202.
doi: 10.1016/S0393-0440(03)00040-8. |
[10] |
G. Chavchanidze,
Non-Noether symmetries in Hamiltonian dynamical systems, Mem. Diff. Eqs. Math. Phys., 36 (2005), 81-134.
|
[11] |
M. Crampin,
Constants of the motion in Lagrangian mechanics, Int. J. Theor. Phys., 16 (1977), 741-754.
doi: 10.1007/BF01807231. |
[12] |
M. Crampin,
A note on non-Noether constants of motion, Phys. Lett. A, 95 (1983), 209-212.
doi: 10.1016/0375-9601(83)90605-9. |
[13] |
M. Crampin, W. Sarlet and G. Thompson, Bi-differential calculi and bi-Hamiltonian systems, J. Phys. A, 33 (2000), L177–180.
doi: 10.1088/0305-4470/33/20/101. |
[14] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy,
Reduction of presymplectic manifolds with symmetry, Rev. Math. Phys., 11 (1999), 1209-1247.
doi: 10.1142/S0129055X99000386. |
[15] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy,
Multivector field formulation of Hamiltonian field theories: Equations and symmetries, J. Phys. A: Math. Gen., 32 (1999), 8461-8484.
doi: 10.1088/0305-4470/32/48/309. |
[16] |
G. Falqui, F. Magri and M. Pedroni, Bihamiltonian geometry and separation of variables for Toda lattices, J. Nonlinear Math. Phys., 8 (2001), suppl., 118–127.
doi: 10.2991/jnmp.2001.8.s.21. |
[17] |
J. Gaset, P. D. Prieto-Martínez and N. Román-Roy,
Variational principles and symmetries on fibered multisymplectic manifolds, Comm. Math., 24 (2016), 137-152.
doi: 10.1515/cm-2016-0010. |
[18] |
B. Jovanović,
Noether symmetries and integrability in Hamiltonian time-dependent mechanics, Theor. App. Mechanics, 43 (2016), 255-273.
doi: 10.2298/TAM160121009J. |
[19] |
P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Mathematics and its Applications, 35. D. Reidel Publishing Co., Dordrecht, 1987.
doi: 10.1007/978-94-009-3807-6. |
[20] |
C. López, E. Martínez and M. F. Rañada,
Dynamical symmetries, non-Cartan symmetries and superintegrability of the $n$-dimensional harmonic oscillator, J. Phys. A, 32 (1999), 1241-1249.
doi: 10.1088/0305-4470/32/7/013. |
[21] |
F. A. Lunev,
Analog of Noether's theorem for non-Noether and nonlocal symmetries, Theor. Math. Phys., 84 (1990), 816-820.
doi: 10.1007/BF01017679. |
[22] |
M. Lutzky,
Origin of non-Noether invariants, Phys. Lett. A, 75 (1980), 8-10.
doi: 10.1016/0375-9601(79)90258-5. |
[23] |
M. Lutzky, New classes of conserved quantities associated with non-Noether symmetries, J. Phys. A, 15 (1982), L87–L91.
doi: 10.1088/0305-4470/15/3/001. |
[24] |
C. M. Marle and J. Nunes da Costa,
Master symmetries and bi-Hamiltonian structures for the relativistic Toda lattice, J. Phys. A, 30 (1997), 7551-7556.
doi: 10.1088/0305-4470/30/21/025. |
[25] |
G. Marmo and N. Mukunda,
Symmetries and constants of the motion in the Lagrangian formalism on $TQ$: Beyond point transformations, Nuovo Cim B, 92 (1986), 1-12.
doi: 10.1007/BF02729691. |
[26] |
G. Marmo, E. J. Saletan, A. Simoni and B. Vitale, Dynamical Systems, a Differential Geometric Approach to Symmetry and Reduction, John Wiley & Sons, Ltd., Chichester, 1985. |
[27] |
J. C. Marrero, N. Román-Roy, M. Salgado and S. Vilariño, Reduction of polysymplectic manifolds, J. Phys. A, 48 (2015), 055206, 43 pp.
doi: 10.1088/1751-8113/48/5/055206. |
[28] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Second edition, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5. |
[29] |
J. Marsden and A. Weinstein,
Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5 (1974), 121-130.
doi: 10.1016/0034-4877(74)90021-4. |
[30] |
J. Mateos-Guilarte and M. S. Plyushchay, Perfectly invisible $\mathcal{PT}$-symmetric zero-gap systems, conformal field theoretical kinks, and exotic nonlinear supersymmetry, J. High Energy Phys., 2017 (2017), 061, front matter+35 pp.
doi: 10.1007/JHEP12(2017)061. |
[31] |
M. F. Rañada,
Integrable three-particle systems, hidden symmetries and deformation of the Calogero-Moser system, J. Math. Phys., 36 (1995), 3541-3558.
doi: 10.1063/1.530980. |
[32] |
M. F. Rañada,
Superintegrable $n = 2$ systems, quadratic constants of motion, and potential of Drach, J. Math. Phys., 38 (1997), 4165-4178.
doi: 10.1063/1.532089. |
[33] |
M. F. Rañada,
Dynamical symmetries, bi-Hamiltonian structures and superintegrable $n = 2$ systems, J. Math. Phys., 41 (2000), 2121-2134.
doi: 10.1063/1.533230. |
[34] |
N. Román-Roy, M. Salgado and S. Vilariño, Higher-order Noether symmetries in $k$-symplectic Hamiltonian field theory, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1360013, 9 pp.
doi: 10.1142/S021988781360013X. |
[35] |
G. Rosensteel and J. P. Draayer,
Symmetry algebra of the anisotropic harmonic oscillator with commensurate frequencies, J. Phys. A, 22 (1989), 1323-1327.
doi: 10.1088/0305-4470/22/9/021. |
[36] |
W. Sarlet and F. Cantrijn,
Higher-order Noether symmetries and constants of the motion, J. Phys. A, 14 (1981), 479-492.
doi: 10.1088/0305-4470/14/2/023. |
[37] |
W. Sarlet and F. Cantrijn,
Generalizations of Noether's theorem in classical mechanics, SIAM Rev., 23 (1981), 467-494.
doi: 10.1137/1023098. |
[38] |
Yu. B. Suris,
On the bi-Hamiltonian structure of Toda and relativistic Toda lattices, Phys. Lett. A, 180 (1993), 419-429.
doi: 10.1016/0375-9601(93)90293-9. |
show all references
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, Second edition, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.
doi: 10.1090/chel/364. |
[2] |
A. Arancibia and M. S. Plyushchay, Chiral asymmetry in propagation of soliton defects in crystalline backgrounds, Phys. Rev. D, 92 (2015), 105009, 20 pp.
doi: 10.1103/PhysRevD.92.105009. |
[3] |
V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[4] |
P. Birtea and R. M. Tudoran, Non-Noether conservation laws, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1220004, 5 pp.
doi: 10.1142/S0219887812200046. |
[5] |
A. V. Bolsinov,
Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution, Math. USSR-Izvestiya, 38 (1992), 69-90.
doi: 10.1070/IM1992v038n01ABEH002187. |
[6] |
A. V. Bolsinov and A. V. Borisov,
Compatible Poisson brackets on Lie algebras, Math. Notes, 72 (2002), 10-30.
doi: 10.1023/A:1019856702638. |
[7] |
J. F. Cariñena and L. A. Ibort,
Non-Noether constants of motion, J. Phys. A, 16 (1983), 1-7.
doi: 10.1088/0305-4470/16/1/010. |
[8] |
J. F. Cariñena, G. Marmo and M. F. Rañada, Non-symplectic symmetries and bi-Hamiltonian structures of the rational harmonic oscillator, J. Phys. A, 35 (2002), L679–L686.
doi: 10.1088/0305-4470/35/47/101. |
[9] |
G. Chavchanidze,
Non-Noether symmetries and their influence on phase space geometry, J. Geom. Phys., 48 (2003), 190-202.
doi: 10.1016/S0393-0440(03)00040-8. |
[10] |
G. Chavchanidze,
Non-Noether symmetries in Hamiltonian dynamical systems, Mem. Diff. Eqs. Math. Phys., 36 (2005), 81-134.
|
[11] |
M. Crampin,
Constants of the motion in Lagrangian mechanics, Int. J. Theor. Phys., 16 (1977), 741-754.
doi: 10.1007/BF01807231. |
[12] |
M. Crampin,
A note on non-Noether constants of motion, Phys. Lett. A, 95 (1983), 209-212.
doi: 10.1016/0375-9601(83)90605-9. |
[13] |
M. Crampin, W. Sarlet and G. Thompson, Bi-differential calculi and bi-Hamiltonian systems, J. Phys. A, 33 (2000), L177–180.
doi: 10.1088/0305-4470/33/20/101. |
[14] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy,
Reduction of presymplectic manifolds with symmetry, Rev. Math. Phys., 11 (1999), 1209-1247.
doi: 10.1142/S0129055X99000386. |
[15] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy,
Multivector field formulation of Hamiltonian field theories: Equations and symmetries, J. Phys. A: Math. Gen., 32 (1999), 8461-8484.
doi: 10.1088/0305-4470/32/48/309. |
[16] |
G. Falqui, F. Magri and M. Pedroni, Bihamiltonian geometry and separation of variables for Toda lattices, J. Nonlinear Math. Phys., 8 (2001), suppl., 118–127.
doi: 10.2991/jnmp.2001.8.s.21. |
[17] |
J. Gaset, P. D. Prieto-Martínez and N. Román-Roy,
Variational principles and symmetries on fibered multisymplectic manifolds, Comm. Math., 24 (2016), 137-152.
doi: 10.1515/cm-2016-0010. |
[18] |
B. Jovanović,
Noether symmetries and integrability in Hamiltonian time-dependent mechanics, Theor. App. Mechanics, 43 (2016), 255-273.
doi: 10.2298/TAM160121009J. |
[19] |
P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Mathematics and its Applications, 35. D. Reidel Publishing Co., Dordrecht, 1987.
doi: 10.1007/978-94-009-3807-6. |
[20] |
C. López, E. Martínez and M. F. Rañada,
Dynamical symmetries, non-Cartan symmetries and superintegrability of the $n$-dimensional harmonic oscillator, J. Phys. A, 32 (1999), 1241-1249.
doi: 10.1088/0305-4470/32/7/013. |
[21] |
F. A. Lunev,
Analog of Noether's theorem for non-Noether and nonlocal symmetries, Theor. Math. Phys., 84 (1990), 816-820.
doi: 10.1007/BF01017679. |
[22] |
M. Lutzky,
Origin of non-Noether invariants, Phys. Lett. A, 75 (1980), 8-10.
doi: 10.1016/0375-9601(79)90258-5. |
[23] |
M. Lutzky, New classes of conserved quantities associated with non-Noether symmetries, J. Phys. A, 15 (1982), L87–L91.
doi: 10.1088/0305-4470/15/3/001. |
[24] |
C. M. Marle and J. Nunes da Costa,
Master symmetries and bi-Hamiltonian structures for the relativistic Toda lattice, J. Phys. A, 30 (1997), 7551-7556.
doi: 10.1088/0305-4470/30/21/025. |
[25] |
G. Marmo and N. Mukunda,
Symmetries and constants of the motion in the Lagrangian formalism on $TQ$: Beyond point transformations, Nuovo Cim B, 92 (1986), 1-12.
doi: 10.1007/BF02729691. |
[26] |
G. Marmo, E. J. Saletan, A. Simoni and B. Vitale, Dynamical Systems, a Differential Geometric Approach to Symmetry and Reduction, John Wiley & Sons, Ltd., Chichester, 1985. |
[27] |
J. C. Marrero, N. Román-Roy, M. Salgado and S. Vilariño, Reduction of polysymplectic manifolds, J. Phys. A, 48 (2015), 055206, 43 pp.
doi: 10.1088/1751-8113/48/5/055206. |
[28] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Second edition, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5. |
[29] |
J. Marsden and A. Weinstein,
Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5 (1974), 121-130.
doi: 10.1016/0034-4877(74)90021-4. |
[30] |
J. Mateos-Guilarte and M. S. Plyushchay, Perfectly invisible $\mathcal{PT}$-symmetric zero-gap systems, conformal field theoretical kinks, and exotic nonlinear supersymmetry, J. High Energy Phys., 2017 (2017), 061, front matter+35 pp.
doi: 10.1007/JHEP12(2017)061. |
[31] |
M. F. Rañada,
Integrable three-particle systems, hidden symmetries and deformation of the Calogero-Moser system, J. Math. Phys., 36 (1995), 3541-3558.
doi: 10.1063/1.530980. |
[32] |
M. F. Rañada,
Superintegrable $n = 2$ systems, quadratic constants of motion, and potential of Drach, J. Math. Phys., 38 (1997), 4165-4178.
doi: 10.1063/1.532089. |
[33] |
M. F. Rañada,
Dynamical symmetries, bi-Hamiltonian structures and superintegrable $n = 2$ systems, J. Math. Phys., 41 (2000), 2121-2134.
doi: 10.1063/1.533230. |
[34] |
N. Román-Roy, M. Salgado and S. Vilariño, Higher-order Noether symmetries in $k$-symplectic Hamiltonian field theory, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1360013, 9 pp.
doi: 10.1142/S021988781360013X. |
[35] |
G. Rosensteel and J. P. Draayer,
Symmetry algebra of the anisotropic harmonic oscillator with commensurate frequencies, J. Phys. A, 22 (1989), 1323-1327.
doi: 10.1088/0305-4470/22/9/021. |
[36] |
W. Sarlet and F. Cantrijn,
Higher-order Noether symmetries and constants of the motion, J. Phys. A, 14 (1981), 479-492.
doi: 10.1088/0305-4470/14/2/023. |
[37] |
W. Sarlet and F. Cantrijn,
Generalizations of Noether's theorem in classical mechanics, SIAM Rev., 23 (1981), 467-494.
doi: 10.1137/1023098. |
[38] |
Yu. B. Suris,
On the bi-Hamiltonian structure of Toda and relativistic Toda lattices, Phys. Lett. A, 180 (1993), 419-429.
doi: 10.1016/0375-9601(93)90293-9. |
[1] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[2] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[3] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[4] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[5] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[6] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[7] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[8] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[9] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[10] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[11] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[12] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[13] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[14] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[15] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[16] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[17] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[18] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[19] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[20] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]