April  2008, 4(2): 393-406. doi: 10.3934/jimo.2008.4.393

Two numerical schemes for general variational inequalities

1. 

Department of Mathematics and Statistics,Thompson Rivers University, 900 McGill Road, PO Box 3010, Kamloops, BC V2C 5N3, Canada, Canada

Received  March 2007 Revised  March 2008 Published  April 2008

In this paper, we compare between the forward-backward splitting method and the extra-gradient method for solving general variational inequalities. It is known that both of these methods are predictor-corrector methods. They use different search directions in the correction-step. Our analysis explains theoretically why the extra-gradient methods would be better than the forward-backward splitting methods for general variational inequalities. We suggest some new step selection procedure independent of the Lipschitz constant. This is a very desirable circumstance when the operator approximates a differential operator. We prove its convergence in Hilbert spaces of any dimension. Our proof is simple as compared with other methods.
Citation: P. Smoczynski, Mohamed Aly Tawhid. Two numerical schemes for general variational inequalities. Journal of Industrial & Management Optimization, 2008, 4 (2) : 393-406. doi: 10.3934/jimo.2008.4.393
[1]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial & Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

[2]

Xiao Ding, Deren Han. A modification of the forward-backward splitting method for maximal monotone mappings. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 295-307. doi: 10.3934/naco.2013.3.295

[3]

Lukas Einkemmer, Alexander Ostermann. A comparison of boundary correction methods for Strang splitting. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2641-2660. doi: 10.3934/dcdsb.2018081

[4]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[5]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[6]

O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185

[7]

Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105

[8]

Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389

[9]

Richard A. Norton, David I. McLaren, G. R. W. Quispel, Ari Stern, Antonella Zanna. Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2079-2098. doi: 10.3934/dcds.2015.35.2079

[10]

Andrew J. Steyer, Erik S. Van Vleck. Underlying one-step methods and nonautonomous stability of general linear methods. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2859-2877. doi: 10.3934/dcdsb.2018108

[11]

Gaohang Yu, Lutai Guan, Guoyin Li. Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property. Journal of Industrial & Management Optimization, 2008, 4 (3) : 565-579. doi: 10.3934/jimo.2008.4.565

[12]

Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099

[13]

Giacomo Frassoldati, Luca Zanni, Gaetano Zanghirati. New adaptive stepsize selections in gradient methods. Journal of Industrial & Management Optimization, 2008, 4 (2) : 299-312. doi: 10.3934/jimo.2008.4.299

[14]

Jiongmin Yong. Forward-backward evolution equations and applications. Mathematical Control & Related Fields, 2016, 6 (4) : 653-704. doi: 10.3934/mcrf.2016019

[15]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

[16]

Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53

[17]

Stefan Kindermann, Antonio Leitão. Convergence rates for Kaczmarz-type regularization methods. Inverse Problems & Imaging, 2014, 8 (1) : 149-172. doi: 10.3934/ipi.2014.8.149

[18]

Shishun Li, Zhengda Huang. Guaranteed descent conjugate gradient methods with modified secant condition. Journal of Industrial & Management Optimization, 2008, 4 (4) : 739-755. doi: 10.3934/jimo.2008.4.739

[19]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[20]

Wataru Nakamura, Yasushi Narushima, Hiroshi Yabe. Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (3) : 595-619. doi: 10.3934/jimo.2013.9.595

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]