2011, 7(4): 1013-1026. doi: 10.3934/jimo.2011.7.1013

Global convergence of an inexact operator splitting method for monotone variational inequalities

1. 

School of Mathematical Sciences, Key Laboratory for NSLSCS of Jiangsu Province, Nanjing Normal University, Nanjing 210046, China, China

2. 

School of Computer Sciences, Nanjing Normal University, Nanjing 210097, China

Received  October 2010 Revised  July 2011 Published  August 2011

Recently, Han (Han D, Inexact operator splitting methods with self-adaptive strategy for variational inequality problems, Journal of Optimization Theory and Applications 132, 227-243 (2007)) proposed an inexact operator splitting method for solving variational inequality problems. It has advantage over the classical operator splitting method of Douglas-Peaceman-Rachford-Varga operator splitting methods (DPRV methods) and some of their variants, since it adopts a very flexible approximate rule in solving the subproblem in each iteration. However, its convergence is established under somewhat stringent condition that the underlying mapping $F$ is strongly monotone. In this paper, we mainly establish the global convergence of the method under weaker condition that the underlying mapping $F$ is monotone, which extends the fields of applications of the method relatively. Some numerical results are also presented to illustrate the method.
Citation: Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013
References:
[1]

J. Douglas and H. H. Rachford, On the numerical solution of the heat conduction problem in 2 and 3 space variables,, Transactions of American Mathematical Society, 82 (1956), 421.

[2]

B. C. Eaves, On the basic theorem of complementarity,, Mathematical Programming, 1 (1971), 68. doi: 10.1007/BF01584073.

[3]

F. Facchinei and J. S. Pang, "Finite-Dimensional Variational Inequalities and Complementarity Problems,", Volumes I and II, (2003).

[4]

M. C. Ferris and J. S. Pang, Engineering and economic applications of complimentarity problems,, SIAM Review, 39 (1997), 669. doi: 10.1137/S0036144595285963.

[5]

A. Fischer, Solution of monotone complementarity problems with locally Lipschitzian functions,, Mathematical Programming, 76 (1997), 513. doi: 10.1007/BF02614396.

[6]

D. R. Han and B. S. He, A new accuracy criterion for approximate proximal point algorithms,, Journal of Mathematical Analysis and Applications, 263 (2001), 343. doi: 10.1006/jmaa.2001.7535.

[7]

D. R. Han and W. Y. Sun, A new modified Goldstein-Levitin-Polyak projection method for variational inequality problems,, Computers and Mathematics with Applications, 47 (2004), 1817. doi: 10.1016/j.camwa.2003.12.002.

[8]

D. R. Han, Inexact operator splitting methods with self-adaptive strategy for variational inequality problems,, Journal of Optimization Theory and Applications, 132 (2007), 227. doi: 10.1007/s10957-006-9060-5.

[9]

D. R. Han, W. Xu and H. Yang, An operator splitting method for variational inequalities with partially unknown mappings,, Numerische Mathematik, 111 (2008), 207. doi: 10.1007/s00211-008-0181-7.

[10]

B. S. He, Inexact implicit methods for monotone general variational inequalities,, Mathematical Programming, 86 (1999), 199. doi: 10.1007/s101070050086.

[11]

B. S. He, H. Yang, Q. Meng and D. R. Han, Modified Goldstein-Levitin-Polyak projection method for asymmetric strongly monotone variational inequalities,, Journal of Optimization Theory and Applications, 112 (2002), 129. doi: 10.1023/A:1013048729944.

[12]

B. S. He, L. Z. Liao and S. L. Wang, Self-adaptive operator splitting methods for monotone variational inequalities,, Numerische Mathematik, 94 (2003), 715.

[13]

M. Li and A. Bnouhachem, A modified inexact operator splitting method for monotone variational inequalities,, Journal of Global Optimization, 41 (2008), 417. doi: 10.1007/s10898-007-9229-y.

[14]

M. Aslam Noor, Y. J. Wang, and N. H. Xiu, Some new projection methods for variational inequalities,, Applied Mathematics and Computation, 137 (2003), 423. doi: 10.1016/S0096-3003(02)00148-0.

[15]

J. S. Pang and P. T. Harker, A damped-Newton method for the linear complementarity problem,, in, 26 (1990), 265.

[16]

D. W. Peaceman and H. H. Rachford, The numerical solution of parabolic elliptic differential equations,, Journal of the Society of Industry and Applied Mathematics, 3 (1955), 28. doi: 10.1137/0103003.

[17]

R. T. Rockafellar, Monotone operators and proximal point algorithm,, SIAM Journal on Control and Optimization, 14 (1976), 877. doi: 10.1137/0314056.

[18]

R. S. Varga, "Matrix Iterative Analysis,", Prentice-Hall, (1962).

[19]

Y. Wang, N. Xiu and C. Wang, A new version of extragradient method for variational inequality problems,, Computers and Mathematics with Applications, 42 (2001), 969. doi: 10.1016/S0898-1221(01)00213-9.

[20]

T. Zhu and Z. G. Yu, A simple proof for some important properties of the projection mapping,, Mathematical Inequalities and Applications, 7 (2004), 453.

show all references

References:
[1]

J. Douglas and H. H. Rachford, On the numerical solution of the heat conduction problem in 2 and 3 space variables,, Transactions of American Mathematical Society, 82 (1956), 421.

[2]

B. C. Eaves, On the basic theorem of complementarity,, Mathematical Programming, 1 (1971), 68. doi: 10.1007/BF01584073.

[3]

F. Facchinei and J. S. Pang, "Finite-Dimensional Variational Inequalities and Complementarity Problems,", Volumes I and II, (2003).

[4]

M. C. Ferris and J. S. Pang, Engineering and economic applications of complimentarity problems,, SIAM Review, 39 (1997), 669. doi: 10.1137/S0036144595285963.

[5]

A. Fischer, Solution of monotone complementarity problems with locally Lipschitzian functions,, Mathematical Programming, 76 (1997), 513. doi: 10.1007/BF02614396.

[6]

D. R. Han and B. S. He, A new accuracy criterion for approximate proximal point algorithms,, Journal of Mathematical Analysis and Applications, 263 (2001), 343. doi: 10.1006/jmaa.2001.7535.

[7]

D. R. Han and W. Y. Sun, A new modified Goldstein-Levitin-Polyak projection method for variational inequality problems,, Computers and Mathematics with Applications, 47 (2004), 1817. doi: 10.1016/j.camwa.2003.12.002.

[8]

D. R. Han, Inexact operator splitting methods with self-adaptive strategy for variational inequality problems,, Journal of Optimization Theory and Applications, 132 (2007), 227. doi: 10.1007/s10957-006-9060-5.

[9]

D. R. Han, W. Xu and H. Yang, An operator splitting method for variational inequalities with partially unknown mappings,, Numerische Mathematik, 111 (2008), 207. doi: 10.1007/s00211-008-0181-7.

[10]

B. S. He, Inexact implicit methods for monotone general variational inequalities,, Mathematical Programming, 86 (1999), 199. doi: 10.1007/s101070050086.

[11]

B. S. He, H. Yang, Q. Meng and D. R. Han, Modified Goldstein-Levitin-Polyak projection method for asymmetric strongly monotone variational inequalities,, Journal of Optimization Theory and Applications, 112 (2002), 129. doi: 10.1023/A:1013048729944.

[12]

B. S. He, L. Z. Liao and S. L. Wang, Self-adaptive operator splitting methods for monotone variational inequalities,, Numerische Mathematik, 94 (2003), 715.

[13]

M. Li and A. Bnouhachem, A modified inexact operator splitting method for monotone variational inequalities,, Journal of Global Optimization, 41 (2008), 417. doi: 10.1007/s10898-007-9229-y.

[14]

M. Aslam Noor, Y. J. Wang, and N. H. Xiu, Some new projection methods for variational inequalities,, Applied Mathematics and Computation, 137 (2003), 423. doi: 10.1016/S0096-3003(02)00148-0.

[15]

J. S. Pang and P. T. Harker, A damped-Newton method for the linear complementarity problem,, in, 26 (1990), 265.

[16]

D. W. Peaceman and H. H. Rachford, The numerical solution of parabolic elliptic differential equations,, Journal of the Society of Industry and Applied Mathematics, 3 (1955), 28. doi: 10.1137/0103003.

[17]

R. T. Rockafellar, Monotone operators and proximal point algorithm,, SIAM Journal on Control and Optimization, 14 (1976), 877. doi: 10.1137/0314056.

[18]

R. S. Varga, "Matrix Iterative Analysis,", Prentice-Hall, (1962).

[19]

Y. Wang, N. Xiu and C. Wang, A new version of extragradient method for variational inequality problems,, Computers and Mathematics with Applications, 42 (2001), 969. doi: 10.1016/S0898-1221(01)00213-9.

[20]

T. Zhu and Z. G. Yu, A simple proof for some important properties of the projection mapping,, Mathematical Inequalities and Applications, 7 (2004), 453.

[1]

Gang Qian, Deren Han, Lingling Xu, Hai Yang. Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities. Journal of Industrial & Management Optimization, 2013, 9 (1) : 255-274. doi: 10.3934/jimo.2013.9.255

[2]

Zhao-Han Sheng, Tingwen Huang, Jian-Guo Du, Qiang Mei, Hui Huang. Study on self-adaptive proportional control method for a class of output models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 459-477. doi: 10.3934/dcdsb.2009.11.459

[3]

Yurii Nesterov, Laura Scrimali. Solving strongly monotone variational and quasi-variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1383-1396. doi: 10.3934/dcds.2011.31.1383

[4]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[5]

Kai Wang, Lingling Xu, Deren Han. A new parallel splitting descent method for structured variational inequalities. Journal of Industrial & Management Optimization, 2014, 10 (2) : 461-476. doi: 10.3934/jimo.2014.10.461

[6]

O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185

[7]

Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749

[8]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial & Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

[9]

Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[10]

Yunmei Chen, Xianqi Li, Yuyuan Ouyang, Eduardo Pasiliao. Accelerated bregman operator splitting with backtracking. Inverse Problems & Imaging, 2017, 11 (6) : 1047-1070. doi: 10.3934/ipi.2017048

[11]

Qin Sheng, David A. Voss, Q. M. Khaliq. An adaptive splitting algorithm for the sine-Gordon equation. Conference Publications, 2005, 2005 (Special) : 792-797. doi: 10.3934/proc.2005.2005.792

[12]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[13]

Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806

[14]

Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451

[15]

Giacomo Frassoldati, Luca Zanni, Gaetano Zanghirati. New adaptive stepsize selections in gradient methods. Journal of Industrial & Management Optimization, 2008, 4 (2) : 299-312. doi: 10.3934/jimo.2008.4.299

[16]

Cesare Bracco, Annalisa Buffa, Carlotta Giannelli, Rafael Vázquez. Adaptive isogeometric methods with hierarchical splines: An overview. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 241-262. doi: 10.3934/dcds.2019010

[17]

Lukas Einkemmer, Alexander Ostermann. A comparison of boundary correction methods for Strang splitting. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2641-2660. doi: 10.3934/dcdsb.2018081

[18]

Xiao Ding, Deren Han. A modification of the forward-backward splitting method for maximal monotone mappings. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 295-307. doi: 10.3934/naco.2013.3.295

[19]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[20]

Lijian Jiang, Craig C. Douglas. Analysis of an operator splitting method in 4D-Var. Conference Publications, 2009, 2009 (Special) : 394-403. doi: 10.3934/proc.2009.2009.394

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]