
Previous Article
Global convergence of an inexact operator splitting method for monotone variational inequalities
 JIMO Home
 This Issue

Next Article
A trustregion filterSQP method for mathematical programs with linear complementarity constraints
Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems
1.  Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27606, United States 
2.  Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China 
References:
[1] 
K. Allemand, K. Fukuda, T. M. Liebling and E. Steiner, A polynomial case of unconstrained zeroone quadratic optimization,, Math. Program, 91 (2001), 49. 
[2] 
A. BenIsrael and T. N. E. Greville, "Generalized Inverses: Theory and Applications," 2nd edition,, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 15 (2003). 
[3] 
A. Billionnet and F. Calmels, Linear programming for the 01 quadratic knapsack problem,, European Journal of Operational Research, 92 (1996), 310. doi: 10.1016/03772217(94)002290. 
[4] 
A. Billionnet, A. Faye and E. Soutif, A new upper bound for the 01 quadratic knapsack problem,, European Journal of Operational Research, 113 (1999), 664. doi: 10.1016/S03772217(97)004141. 
[5] 
D. Bienstock, Computational study of a family of mixedinteger quadratic programming problems,, Math. Program, 74 (1996), 121. doi: 10.1007/BF02592208. 
[6] 
I. M. Bomze, Global optimization: A quadratic programming perspective,, in, 1989 (2010), 1. 
[7] 
I. M. Bomze and F. Jarre, A note on Burer's copositive representation of mixedbinary QPs,, Optimization Letter, 4 (2010), 465. doi: 10.1007/s1159001001741. 
[8] 
S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs,, Math. Program., 120 (2009), 479. doi: 10.1007/s101070080223z. 
[9] 
S. Bundfuss and M. Dür, "An Adaptive Linear Approximation Algorithm for Copositive Programs,", Manuscript, (2008). 
[10] 
S.C. Fang, D. Y. Gao, R.L. Sheu and S.Y. Wu, Canonical dual approach to solving 01 quadratic programming problems,, Journal of Industrial and Management Optimization, 4 (2008), 125. 
[11] 
D. Y. Gao, Canonical dual transformation method and generalized triality theory in nonsmooth global optimization,, J. Global Optimization, 17 (2000), 127. doi: 10.1023/A:1026537630859. 
[12] 
D. Y. Gao, Advances in canonical duality theory with applications to global optimization,, Available from: \url{http://www.math.vt.edu/people/gao/papers/focapo08.pdf}., (). 
[13] 
M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NPCompleteness,", A Series of Books in the Mathematical Sciences, (1979). 
[14] 
G. T. Herman, "Image Reconstruction from Projections: The Fundamentals of Computerized Tomography,", Computer Science and Applied Mathematics. Academic Press, (1980). 
[15] 
V. Jeyakumar, A. M. Rubinov and Z. Y. Wu, Nonconvex quadratic minimization problems with quadratic constraints: Global optimality conditions,, Math. Program., 110 (2007), 521. doi: 10.1007/s1010700600125. 
[16] 
E. de Klerk and D. V. Pasechnik, Approximation of the stability number of a graph via copositive programming,, SIAM J. Optim., 12 (2002), 875. doi: 10.1137/S1052623401383248. 
[17] 
C. Lu, S.C. Fang, Q. Jin, Z. Wang and W. Xing, KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems,, working paper, (2010). 
[18] 
C. Lu, Z. Wang, W. Xing and S.C. Fang, Extended canonical duality and conic programming for solving 01 quadratic programming problems,, Journal of Industrial and Management Optimization, 6 (2010), 779. doi: 10.3934/jimo.2010.6.779. 
[19] 
C. Lemaréchal and F. Oustry, SDP relaxations in combinatorial optimization from a Lagrangian viewpoint,, in, 54 (2001), 119. 
[20] 
J. B. Lasserre, Global optimization with polynomials and the problem of moments,, SIAM J. Optimization, 11 (): 796. doi: 10.1137/S1052623400366802. 
[21] 
P. Lötstedt, Solving the minimal least squares problem subject to bounds on the variables,, BIT, 24 (1984), 206. 
[22] 
P. Parrilo, "Structured Semidefinite Programs and SemiAlgebraic Geometry Methods in Robustness and Optimization,", Ph.D. Thesis, (2000). 
[23] 
J. F. Strum and S. Zhang, On cones of nonnegative quadratic functions,, Mathematics of Operations Research, 28 (2003), 246. doi: 10.1287/moor.28.2.246.14485. 
[24] 
X. Sun, C. Liu, D. Li and J. Gao, On duality gap in binary quadratic programming,, Available from: \url{http://www.optimizationonline.org/DB_FILE/2010/01/2512.pdf}., (). 
[25] 
Z. Wang, S.C. Fang, D. Y. Gao and W. Xing, Global extremal conditions for multiinteger quadratic programming,, J. Industrial and Management Optimization, 4 (2008), 213. doi: 10.3934/jimo.2008.4.213. 
[26] 
L. F. Zuluage, J. Vera and J. Peña, LMI approximations for cones of positive semidefinite forms,, SIAM J. Optimization, 16 (2006), 1076. 
show all references
References:
[1] 
K. Allemand, K. Fukuda, T. M. Liebling and E. Steiner, A polynomial case of unconstrained zeroone quadratic optimization,, Math. Program, 91 (2001), 49. 
[2] 
A. BenIsrael and T. N. E. Greville, "Generalized Inverses: Theory and Applications," 2nd edition,, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 15 (2003). 
[3] 
A. Billionnet and F. Calmels, Linear programming for the 01 quadratic knapsack problem,, European Journal of Operational Research, 92 (1996), 310. doi: 10.1016/03772217(94)002290. 
[4] 
A. Billionnet, A. Faye and E. Soutif, A new upper bound for the 01 quadratic knapsack problem,, European Journal of Operational Research, 113 (1999), 664. doi: 10.1016/S03772217(97)004141. 
[5] 
D. Bienstock, Computational study of a family of mixedinteger quadratic programming problems,, Math. Program, 74 (1996), 121. doi: 10.1007/BF02592208. 
[6] 
I. M. Bomze, Global optimization: A quadratic programming perspective,, in, 1989 (2010), 1. 
[7] 
I. M. Bomze and F. Jarre, A note on Burer's copositive representation of mixedbinary QPs,, Optimization Letter, 4 (2010), 465. doi: 10.1007/s1159001001741. 
[8] 
S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs,, Math. Program., 120 (2009), 479. doi: 10.1007/s101070080223z. 
[9] 
S. Bundfuss and M. Dür, "An Adaptive Linear Approximation Algorithm for Copositive Programs,", Manuscript, (2008). 
[10] 
S.C. Fang, D. Y. Gao, R.L. Sheu and S.Y. Wu, Canonical dual approach to solving 01 quadratic programming problems,, Journal of Industrial and Management Optimization, 4 (2008), 125. 
[11] 
D. Y. Gao, Canonical dual transformation method and generalized triality theory in nonsmooth global optimization,, J. Global Optimization, 17 (2000), 127. doi: 10.1023/A:1026537630859. 
[12] 
D. Y. Gao, Advances in canonical duality theory with applications to global optimization,, Available from: \url{http://www.math.vt.edu/people/gao/papers/focapo08.pdf}., (). 
[13] 
M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NPCompleteness,", A Series of Books in the Mathematical Sciences, (1979). 
[14] 
G. T. Herman, "Image Reconstruction from Projections: The Fundamentals of Computerized Tomography,", Computer Science and Applied Mathematics. Academic Press, (1980). 
[15] 
V. Jeyakumar, A. M. Rubinov and Z. Y. Wu, Nonconvex quadratic minimization problems with quadratic constraints: Global optimality conditions,, Math. Program., 110 (2007), 521. doi: 10.1007/s1010700600125. 
[16] 
E. de Klerk and D. V. Pasechnik, Approximation of the stability number of a graph via copositive programming,, SIAM J. Optim., 12 (2002), 875. doi: 10.1137/S1052623401383248. 
[17] 
C. Lu, S.C. Fang, Q. Jin, Z. Wang and W. Xing, KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems,, working paper, (2010). 
[18] 
C. Lu, Z. Wang, W. Xing and S.C. Fang, Extended canonical duality and conic programming for solving 01 quadratic programming problems,, Journal of Industrial and Management Optimization, 6 (2010), 779. doi: 10.3934/jimo.2010.6.779. 
[19] 
C. Lemaréchal and F. Oustry, SDP relaxations in combinatorial optimization from a Lagrangian viewpoint,, in, 54 (2001), 119. 
[20] 
J. B. Lasserre, Global optimization with polynomials and the problem of moments,, SIAM J. Optimization, 11 (): 796. doi: 10.1137/S1052623400366802. 
[21] 
P. Lötstedt, Solving the minimal least squares problem subject to bounds on the variables,, BIT, 24 (1984), 206. 
[22] 
P. Parrilo, "Structured Semidefinite Programs and SemiAlgebraic Geometry Methods in Robustness and Optimization,", Ph.D. Thesis, (2000). 
[23] 
J. F. Strum and S. Zhang, On cones of nonnegative quadratic functions,, Mathematics of Operations Research, 28 (2003), 246. doi: 10.1287/moor.28.2.246.14485. 
[24] 
X. Sun, C. Liu, D. Li and J. Gao, On duality gap in binary quadratic programming,, Available from: \url{http://www.optimizationonline.org/DB_FILE/2010/01/2512.pdf}., (). 
[25] 
Z. Wang, S.C. Fang, D. Y. Gao and W. Xing, Global extremal conditions for multiinteger quadratic programming,, J. Industrial and Management Optimization, 4 (2008), 213. doi: 10.3934/jimo.2008.4.213. 
[26] 
L. F. Zuluage, J. Vera and J. Peña, LMI approximations for cones of positive semidefinite forms,, SIAM J. Optimization, 16 (2006), 1076. 
[1] 
Lihua Li, Yan Gao, Hongjie Wang. Second order sufficient optimality conditions for hybrid control problems with state jump. Journal of Industrial & Management Optimization, 2015, 11 (1) : 329343. doi: 10.3934/jimo.2015.11.329 
[2] 
RazIye Mert, A. Zafer. A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Conference Publications, 2011, 2011 (Special) : 10611067. doi: 10.3934/proc.2011.2011.1061 
[3] 
M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partiallyaffine control problems. Discrete & Continuous Dynamical Systems  S, 2018, 11 (6) : 12331258. doi: 10.3934/dcdss.2018070 
[4] 
J.P. Raymond, F. Tröltzsch. Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete & Continuous Dynamical Systems  A, 2000, 6 (2) : 431450. doi: 10.3934/dcds.2000.6.431 
[5] 
B. Bonnard, J.B. Caillau, E. Trélat. Second order optimality conditions with applications. Conference Publications, 2007, 2007 (Special) : 145154. doi: 10.3934/proc.2007.2007.145 
[6] 
A. C. Eberhard, C.E.M. Pearce. A sufficient optimality condition for nonregular problems via a nonlinear Lagrangian. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 301331. doi: 10.3934/naco.2012.2.301 
[7] 
Ana P. LemosPaião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed statelinear optimal control problems. Discrete & Continuous Dynamical Systems  B, 2019, 24 (5) : 22932313. doi: 10.3934/dcdsb.2019096 
[8] 
Louis Tcheugoue Tebou. Equivalence between observability and stabilization for a class of second order semilinear evolution. Conference Publications, 2009, 2009 (Special) : 744752. doi: 10.3934/proc.2009.2009.744 
[9] 
Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level secondorder cone programming problem. Journal of Industrial & Management Optimization, 2015, 11 (4) : 11111125. doi: 10.3934/jimo.2015.11.1111 
[10] 
Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 134. doi: 10.3934/mcrf.2018001 
[11] 
Qilin Wang, XiaoBing Li, Guolin Yu. Secondorder weak composed epiderivatives and applications to optimality conditions. Journal of Industrial & Management Optimization, 2013, 9 (2) : 455470. doi: 10.3934/jimo.2013.9.455 
[12] 
Yong Xia. New sufficient global optimality conditions for linearly constrained bivalent quadratic optimization problems. Journal of Industrial & Management Optimization, 2009, 5 (4) : 881892. doi: 10.3934/jimo.2009.5.881 
[13] 
Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discretetime single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213232. doi: 10.3934/jcd.2014.1.213 
[14] 
Hongwei Lou. Secondorder necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete & Continuous Dynamical Systems  B, 2010, 14 (4) : 14451464. doi: 10.3934/dcdsb.2010.14.1445 
[15] 
Gurkan Ozturk, Mehmet Tahir Ciftci. Clustering based polyhedral conic functions algorithm in classification. Journal of Industrial & Management Optimization, 2015, 11 (3) : 921932. doi: 10.3934/jimo.2015.11.921 
[16] 
Ziye Shi, Qingwei Jin. Second order optimality conditions and reformulations for nonconvex quadratically constrained quadratic programming problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 871882. doi: 10.3934/jimo.2014.10.871 
[17] 
Liwei Zhang, Jihong Zhang, Yule Zhang. Secondorder optimality conditions for cone constrained multiobjective optimization. Journal of Industrial & Management Optimization, 2018, 14 (3) : 10411054. doi: 10.3934/jimo.2017089 
[18] 
LiLi Wan, ChunLei Tang. Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition. Discrete & Continuous Dynamical Systems  B, 2011, 15 (1) : 255271. doi: 10.3934/dcdsb.2011.15.255 
[19] 
Xin Zhang, Jie Wen, Qin Ni. Subspace trustregion algorithm with conic model for unconstrained optimization. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 223234. doi: 10.3934/naco.2013.3.223 
[20] 
MiniakGórecka Alicja, Nowakowski Andrzej. Sufficient optimality conditions for a class of epidemic problems with control on the boundary. Mathematical Biosciences & Engineering, 2017, 14 (1) : 263275. doi: 10.3934/mbe.2017017 
2017 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]