2011, 7(4): 789-809. doi: 10.3934/jimo.2011.7.789

Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions

1. 

Equipe de Recherhce en Informatique et Mathématiques (ERIM), University of New Caledonia (France), B.P. R4, F98851, Nouméa Cedex, New Caledonia (French), New Caledonia (French)

Received  October 2010 Revised  May 2011 Published  August 2011

We present explicit optimality conditions for a nonsmooth functional defined over the (properly or weakly) Pareto set associated with a multi-objective linear-quadratic control problem. This problem is very difficult even in a finite dimensional setting , i.e. when, instead of a control problem, we deal with a mathematical programming problem. Amongst various applications, our problem may be considered as a response for a decision maker when he has to choose a solution over the solution set of the grand coalition $p$-player cooperative differential game.
Citation: Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789
References:
[1]

H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, "Matrix Riccati Equations in Control and Systems Theory,", Systems & Control: Foundations & Applications, (2003). doi: 10.1007/978-3-0348-8081-7_9.

[2]

L. T. H. An, P. D. Tao and L. D. Muu, Numerical solution for optimization over the efficient set by d.c. optimization algorithms,, Oper. Res. Lett., 19 (1996), 117. doi: 10.1016/0167-6377(96)00022-3.

[3]

J.-P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", Pure and Applied Mathematics (New York), (1984).

[4]

V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique,, J. Ind. Manag. Optim., 4 (2008), 697.

[5]

H. P. Benson, Optimization over the efficient set,, J. Math. Anal. Appl., 98 (1984), 562. doi: 10.1016/0022-247X(84)90269-5.

[6]

H. P. Benson, A finite, nonadjacent extreme point search algorithm for optimization over the efficient set,, J. Optim. Theory Appl., 73 (1992), 47. doi: 10.1007/BF00940077.

[7]

S. Bolintineanu, Optimality conditions for minimization over the (weakly or properly) efficient set,, J. Math. Anal. Appl., 173 (1993), 523.

[8]

S. Bolintineanu, Minimization of a quasi-concave function over an efficient set,, Math. Programming, 61 (1993), 89. doi: 10.1007/BF01582141.

[9]

S. Bolintineanu, Necessary conditions for nonlinear suboptimization over the weakly-efficient set,, J. Optim. Theory Appl., 78 (1993), 579. doi: 10.1007/BF00939883.

[10]

S. Bolintinéanu and M. El Maghri, Pénalisation dans l'optimisation sur l'ensemble faiblement efficient,, (French) [Penalization in optimization over the weakly efficient set], 31 (1997), 295.

[11]

H. Bonnel and C. Y. Kaya, Optimization over the efficient set of multi-objective convex optimal control problems,, J. Optim. Theory Appl., 147 (2010), 93. doi: 10.1007/s10957-010-9709-y.

[12]

H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach,, J. Optim. Theory Appl., 131 (2006), 365. doi: 10.1007/s10957-006-9150-4.

[13]

H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem,, Pac. J. Optim., 2 (2006), 447.

[14]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).

[15]

B. D. Craven, Aspects of multicriteria optimization,, in, (1991), 93.

[16]

J. P. Dauer, Optimization over the efficient set using an active constraint approach,, Z. Oper. Res., 35 (1991), 185.

[17]

J. P. Dauer and T. A. Fosnaugh, Optimization over the efficient set,, J. Global Optim., 7 (1995), 261. doi: 10.1007/BF01279451.

[18]

G. Eichfelder, "Adaptive Scalarization Methods in Multiobjective Optimization,", Springer-Verlag, (2008). doi: 10.1007/978-3-540-79159-1.

[19]

J. Engwerda, Necessary and sufficient conditions for Pareto optimal solution of cooperative differential games,, SIAM J. Control Optim., 48 (2010), 3859. doi: 10.1137/080726227.

[20]

J. Fülöp, A cutting plane algorithm for linear optimization over the efficient set,, in, 405 (1994), 374.

[21]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17 (2003).

[22]

R. Horst and N. V. Thoai, Maximizing a concave function over the efficient or weakly-efficient set,, European J. Oper. Res., 117 (1999), 239.

[23]

R. Horst, N. V. Thoai, Y. Yamamoto and D. Zenke, On optimization over the efficient set in linear multicriteria programming,, J. Optim. Theory Appl., 134 (2007), 433. doi: 10.1007/s10957-007-9219-8.

[24]

J. Jahn, "Vector Optimization: Theory, Applications, and Extensions,", Springer-Verlag, (2004).

[25]

J. Jahn, "Introduction to the Theory of Nonlinear Optimization,", 3rd edition, (2007).

[26]

Y. Liu, K. L. Teo and R. P. Agarwal, A general approach to nonlinear multiple control problems with perturbation consideration,, Math. Comput. Modelling, 26 (1997), 49. doi: 10.1016/S0895-7177(97)00239-2.

[27]

D. T. Lųc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989).

[28]

K. Miettinen, "Nonlinear Multiobjective Optimization,", International Series in Operations Research & Management Science, 12 (1999). doi: 10.1007/978-1-4615-5563-6.

[29]

J. Philip, Algorithms for the vector maximization problem,, Math. Programming, 2 (1972), 207. doi: 10.1007/BF01584543.

[30]

T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).

[31]

K. L. Teo, D. Li and Y. Liu, Perturbation feedback control in general multiple linear-quadratic control problems,, IMA J. Math. Control Inform., 15 (1998), 303. doi: 10.1093/imamci/15.3.303.

[32]

Y. Yamamoto, Optimization over the efficient set: Overview,, J. Global Optim., 22 (2002), 285. doi: 10.1023/A:1013875600711.

show all references

References:
[1]

H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, "Matrix Riccati Equations in Control and Systems Theory,", Systems & Control: Foundations & Applications, (2003). doi: 10.1007/978-3-0348-8081-7_9.

[2]

L. T. H. An, P. D. Tao and L. D. Muu, Numerical solution for optimization over the efficient set by d.c. optimization algorithms,, Oper. Res. Lett., 19 (1996), 117. doi: 10.1016/0167-6377(96)00022-3.

[3]

J.-P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", Pure and Applied Mathematics (New York), (1984).

[4]

V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique,, J. Ind. Manag. Optim., 4 (2008), 697.

[5]

H. P. Benson, Optimization over the efficient set,, J. Math. Anal. Appl., 98 (1984), 562. doi: 10.1016/0022-247X(84)90269-5.

[6]

H. P. Benson, A finite, nonadjacent extreme point search algorithm for optimization over the efficient set,, J. Optim. Theory Appl., 73 (1992), 47. doi: 10.1007/BF00940077.

[7]

S. Bolintineanu, Optimality conditions for minimization over the (weakly or properly) efficient set,, J. Math. Anal. Appl., 173 (1993), 523.

[8]

S. Bolintineanu, Minimization of a quasi-concave function over an efficient set,, Math. Programming, 61 (1993), 89. doi: 10.1007/BF01582141.

[9]

S. Bolintineanu, Necessary conditions for nonlinear suboptimization over the weakly-efficient set,, J. Optim. Theory Appl., 78 (1993), 579. doi: 10.1007/BF00939883.

[10]

S. Bolintinéanu and M. El Maghri, Pénalisation dans l'optimisation sur l'ensemble faiblement efficient,, (French) [Penalization in optimization over the weakly efficient set], 31 (1997), 295.

[11]

H. Bonnel and C. Y. Kaya, Optimization over the efficient set of multi-objective convex optimal control problems,, J. Optim. Theory Appl., 147 (2010), 93. doi: 10.1007/s10957-010-9709-y.

[12]

H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach,, J. Optim. Theory Appl., 131 (2006), 365. doi: 10.1007/s10957-006-9150-4.

[13]

H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem,, Pac. J. Optim., 2 (2006), 447.

[14]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).

[15]

B. D. Craven, Aspects of multicriteria optimization,, in, (1991), 93.

[16]

J. P. Dauer, Optimization over the efficient set using an active constraint approach,, Z. Oper. Res., 35 (1991), 185.

[17]

J. P. Dauer and T. A. Fosnaugh, Optimization over the efficient set,, J. Global Optim., 7 (1995), 261. doi: 10.1007/BF01279451.

[18]

G. Eichfelder, "Adaptive Scalarization Methods in Multiobjective Optimization,", Springer-Verlag, (2008). doi: 10.1007/978-3-540-79159-1.

[19]

J. Engwerda, Necessary and sufficient conditions for Pareto optimal solution of cooperative differential games,, SIAM J. Control Optim., 48 (2010), 3859. doi: 10.1137/080726227.

[20]

J. Fülöp, A cutting plane algorithm for linear optimization over the efficient set,, in, 405 (1994), 374.

[21]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17 (2003).

[22]

R. Horst and N. V. Thoai, Maximizing a concave function over the efficient or weakly-efficient set,, European J. Oper. Res., 117 (1999), 239.

[23]

R. Horst, N. V. Thoai, Y. Yamamoto and D. Zenke, On optimization over the efficient set in linear multicriteria programming,, J. Optim. Theory Appl., 134 (2007), 433. doi: 10.1007/s10957-007-9219-8.

[24]

J. Jahn, "Vector Optimization: Theory, Applications, and Extensions,", Springer-Verlag, (2004).

[25]

J. Jahn, "Introduction to the Theory of Nonlinear Optimization,", 3rd edition, (2007).

[26]

Y. Liu, K. L. Teo and R. P. Agarwal, A general approach to nonlinear multiple control problems with perturbation consideration,, Math. Comput. Modelling, 26 (1997), 49. doi: 10.1016/S0895-7177(97)00239-2.

[27]

D. T. Lųc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989).

[28]

K. Miettinen, "Nonlinear Multiobjective Optimization,", International Series in Operations Research & Management Science, 12 (1999). doi: 10.1007/978-1-4615-5563-6.

[29]

J. Philip, Algorithms for the vector maximization problem,, Math. Programming, 2 (1972), 207. doi: 10.1007/BF01584543.

[30]

T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).

[31]

K. L. Teo, D. Li and Y. Liu, Perturbation feedback control in general multiple linear-quadratic control problems,, IMA J. Math. Control Inform., 15 (1998), 303. doi: 10.1093/imamci/15.3.303.

[32]

Y. Yamamoto, Optimization over the efficient set: Overview,, J. Global Optim., 22 (2002), 285. doi: 10.1023/A:1013875600711.

[1]

Hamed Fazlollahtabar, Mohammad Saidi-Mehrabad. Optimizing multi-objective decision making having qualitative evaluation. Journal of Industrial & Management Optimization, 2015, 11 (3) : 747-762. doi: 10.3934/jimo.2015.11.747

[2]

Adriel Cheng, Cheng-Chew Lim. Optimizing system-on-chip verifications with multi-objective genetic evolutionary algorithms. Journal of Industrial & Management Optimization, 2014, 10 (2) : 383-396. doi: 10.3934/jimo.2014.10.383

[3]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1-14. doi: 10.3934/jimo.2017089

[4]

Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial & Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453

[5]

Chaabane Djamal, Pirlot Marc. A method for optimizing over the integer efficient set. Journal of Industrial & Management Optimization, 2010, 6 (4) : 811-823. doi: 10.3934/jimo.2010.6.811

[6]

Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487

[7]

Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068

[8]

Tien-Fu Liang, Hung-Wen Cheng. Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method. Journal of Industrial & Management Optimization, 2011, 7 (2) : 365-383. doi: 10.3934/jimo.2011.7.365

[9]

Zongmin Li, Jiuping Xu, Wenjing Shen, Benjamin Lev, Xiao Lei. Bilevel multi-objective construction site security planning with twofold random phenomenon. Journal of Industrial & Management Optimization, 2015, 11 (2) : 595-617. doi: 10.3934/jimo.2015.11.595

[10]

Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751

[11]

Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061

[12]

Jiahua Zhang, Shu-Cherng Fang, Yifan Xu, Ziteng Wang. A cooperative game with envy. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2049-2066. doi: 10.3934/jimo.2017031

[13]

Tran Ngoc Thang, Nguyen Thi Bach Kim. Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1417-1433. doi: 10.3934/jimo.2016.12.1417

[14]

Divya Thakur, Belinda Marchand. Hybrid optimal control for HIV multi-drug therapies: A finite set control transcription approach. Mathematical Biosciences & Engineering, 2012, 9 (4) : 899-914. doi: 10.3934/mbe.2012.9.899

[15]

Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1

[16]

JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042

[17]

Alejandra Fonseca-Morales, Onésimo Hernández-Lerma. A note on differential games with Pareto-optimal NASH equilibria: Deterministic and stochastic models. Journal of Dynamics & Games, 2017, 4 (3) : 195-203. doi: 10.3934/jdg.2017012

[18]

Ye Tian, Qingwei Jin, Zhibin Deng. Quadratic optimization over a polyhedral cone. Journal of Industrial & Management Optimization, 2016, 12 (1) : 269-283. doi: 10.3934/jimo.2016.12.269

[19]

Pierre Cardaliaguet, Chloé Jimenez, Marc Quincampoix. Pure and Random strategies in differential game with incomplete informations. Journal of Dynamics & Games, 2014, 1 (3) : 363-375. doi: 10.3934/jdg.2014.1.363

[20]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]