• Previous Article
    A new dynamic geometric approach for empirical analysis of financial ratios and bankruptcy
  • JIMO Home
  • This Issue
  • Next Article
    A smoothing homotopy method based on Robinson's normal equation for mixed complementarity problems
2011, 7(4): 967-975. doi: 10.3934/jimo.2011.7.967

A variational problem and optimal control

1. 

Chung Yuan Christian University, Chung Li, Taiwan, Taiwan

2. 

National Tsing Hua University, Hsinchu, Taiwan

Received  January 2011 Revised  June 2011 Published  August 2011

A variational problem involving two variables, the state and the control variables, is reduced to another variational problem in which the objective has no control variable, but the constrained identity has one. We then establish that the two problems are equivalent with the same optimal (state) solution under some conditions.
Citation: Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967
References:
[1]

G. P. Akilov and L. V. Kantorovich, "Functional Analysis,", 2nd edition, (1982).

[2]

H. C. Lai, Duality of Banach function spaces and Radon Nikodym property,, Acta Mathematics Hungarica, 47 (1986), 45. doi: 10.1007/BF01949123.

[3]

H. C. Lai and J. W. Chen, On the generalized Euler-Lagrange equations,, Journal of Mathematical Analysis and Applications, 213 (1997), 681.

[4]

H. C. Lai and J. C. Lee, Convergent Theorems and $L$$p$-selections for Banach-valued multifunctions,, Nihonkai Math. Journal, 4 (1993), 163.

[5]

H. C. Lai and J. C. Lee, Integration Theory for Banach-valued multifunctions,, Indian Journal of Mathematics, 34 (1992), 265.

[6]

H. C. Lai and J. C. Lee, Integral representations and convergences for Banach-valued multifunctions,, Fixed Point Theory and Applications (Halifax, (1992), 169.

[7]

H. C. Lai and L. J. Lin, The Fenchel-Moreau theorem for set functions,, Proceedings of the American Mathematics Society, 103 (1988), 85. doi: 10.1090/S0002-9939-1988-0938649-4.

[8]

C. Olech, Existence theorem in optimal control problems involving multiple integrals,, Journal of Differential Equations, 6 (1969), 512. doi: 10.1016/0022-0396(69)90007-2.

[9]

J. P. Raymond, Existence theorems in optimal control problems without convexity assumptions,, Journal of Optimization Theory and Applications, 67 (1990), 109. doi: 10.1007/BF00939738.

[10]

R. T. Rockafellar, Existence theorems for general control problems of Bolza and Lagrange,, Advances in Mathematics, 15 (1975), 312. doi: 10.1016/0001-8708(75)90140-1.

show all references

References:
[1]

G. P. Akilov and L. V. Kantorovich, "Functional Analysis,", 2nd edition, (1982).

[2]

H. C. Lai, Duality of Banach function spaces and Radon Nikodym property,, Acta Mathematics Hungarica, 47 (1986), 45. doi: 10.1007/BF01949123.

[3]

H. C. Lai and J. W. Chen, On the generalized Euler-Lagrange equations,, Journal of Mathematical Analysis and Applications, 213 (1997), 681.

[4]

H. C. Lai and J. C. Lee, Convergent Theorems and $L$$p$-selections for Banach-valued multifunctions,, Nihonkai Math. Journal, 4 (1993), 163.

[5]

H. C. Lai and J. C. Lee, Integration Theory for Banach-valued multifunctions,, Indian Journal of Mathematics, 34 (1992), 265.

[6]

H. C. Lai and J. C. Lee, Integral representations and convergences for Banach-valued multifunctions,, Fixed Point Theory and Applications (Halifax, (1992), 169.

[7]

H. C. Lai and L. J. Lin, The Fenchel-Moreau theorem for set functions,, Proceedings of the American Mathematics Society, 103 (1988), 85. doi: 10.1090/S0002-9939-1988-0938649-4.

[8]

C. Olech, Existence theorem in optimal control problems involving multiple integrals,, Journal of Differential Equations, 6 (1969), 512. doi: 10.1016/0022-0396(69)90007-2.

[9]

J. P. Raymond, Existence theorems in optimal control problems without convexity assumptions,, Journal of Optimization Theory and Applications, 67 (1990), 109. doi: 10.1007/BF00939738.

[10]

R. T. Rockafellar, Existence theorems for general control problems of Bolza and Lagrange,, Advances in Mathematics, 15 (1975), 312. doi: 10.1016/0001-8708(75)90140-1.

[1]

Zdzisław Brzeźniak, Paul André Razafimandimby. Irreducibility and strong Feller property for stochastic evolution equations in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1051-1077. doi: 10.3934/dcdsb.2016.21.1051

[2]

Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253

[3]

Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068

[4]

Agnieszka Ulikowska. An age-structured two-sex model in the space of radon measures: Well posedness. Kinetic & Related Models, 2012, 5 (4) : 873-900. doi: 10.3934/krm.2012.5.873

[5]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Bounded solutions of the Boltzmann equation in the whole space. Kinetic & Related Models, 2011, 4 (1) : 17-40. doi: 10.3934/krm.2011.4.17

[6]

Daniel Alpay, Mihai Putinar, Victor Vinnikov. A Hilbert space approach to bounded analytic extension in the ball. Communications on Pure & Applied Analysis, 2003, 2 (2) : 139-145. doi: 10.3934/cpaa.2003.2.139

[7]

Roberto Livrea, Salvatore A. Marano. A min-max principle for non-differentiable functions with a weak compactness condition. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1019-1029. doi: 10.3934/cpaa.2009.8.1019

[8]

Ken Abe. Some uniqueness result of the Stokes flow in a half space in a space of bounded functions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 887-900. doi: 10.3934/dcdss.2014.7.887

[9]

Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671

[10]

Giselle A. Monteiro, Milan Tvrdý. Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 283-303. doi: 10.3934/dcds.2013.33.283

[11]

RazIye Mert, A. Zafer. A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Conference Publications, 2011, 2011 (Special) : 1061-1067. doi: 10.3934/proc.2011.2011.1061

[12]

G. Acosta, Julián Fernández Bonder, P. Groisman, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 279-294. doi: 10.3934/dcdsb.2002.2.279

[13]

Barbara Kaltenbacher, Ivan Tomba. Enhanced choice of the parameters in an iteratively regularized Newton-Landweber iteration in Banach space. Conference Publications, 2015, 2015 (special) : 686-695. doi: 10.3934/proc.2015.0686

[14]

Hannelore Lisei, Radu Precup, Csaba Varga. A Schechter type critical point result in annular conical domains of a Banach space and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3775-3789. doi: 10.3934/dcds.2016.36.3775

[15]

T. J. Sullivan. Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors. Inverse Problems & Imaging, 2017, 11 (5) : 857-874. doi: 10.3934/ipi.2017040

[16]

Gerard A. Maugin, Martine Rousseau. Prolegomena to studies on dynamic materials and their space-time homogenization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1599-1608. doi: 10.3934/dcdss.2013.6.1599

[17]

Cristina De Ambrosi, Annalisa Barla, Lorenzo Tortolina, Nicoletta Castagnino, Raffaele Pesenti, Alessandro Verri, Alberto Ballestrero, Franco Patrone, Silvio Parodi. Parameter space exploration within dynamic simulations of signaling networks. Mathematical Biosciences & Engineering, 2013, 10 (1) : 103-120. doi: 10.3934/mbe.2013.10.103

[18]

Núria Fagella, David Martí-Pete. Dynamic rays of bounded-type transcendental self-maps of the punctured plane. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3123-3160. doi: 10.3934/dcds.2017134

[19]

Gabriel Ponce, Ali Tahzibi, Régis Varão. Minimal yet measurable foliations. Journal of Modern Dynamics, 2014, 8 (1) : 93-107. doi: 10.3934/jmd.2014.8.93

[20]

Luigi Fontana, Steven G. Krantz and Marco M. Peloso. Hodge theory in the Sobolev topology for the de Rham complex on a smoothly bounded domain in Euclidean space. Electronic Research Announcements, 1995, 1: 103-107.

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]