
Previous Article
A modified differential evolution based solution technique for economic dispatch problems
 JIMO Home
 This Issue

Next Article
A proximal alternating direction method for $\ell_{2,1}$norm least squares problem in multitask feature learning
State transition algorithm
1.  School of Information Science and Engineering, Central South University, Changsha, 410083, China 
References:
[1] 
G. Albeanu, A monte carlo approach for control search,, Mathematics and Computers in Simulation, 43 (1997), 223. doi: 10.1016/S03784754(96)000699. 
[2] 
H. A. Abbass, A. M. Bagirov and J. Zhang, The discrete gradient evolutionary strategy method for global optimization,, in, 1 (2003), 435. 
[3] 
D. D. Burgess, Rotation in simplex optimization,, Analytica Chimica Acta, 181 (1986), 97. doi: 10.1016/S00032670(00)852241. 
[4] 
F. V. Berth and A. P. Engelbrecht, A study of particle swarm optimization particle trajectories,, Information Sciences, 176 (2006), 937. doi: 10.1016/j.ins.2005.02.003. 
[5] 
P. Collet and J. P. Rennard, "Stochastic Optimization Algorithms,", Handbook of Research on Nature Inspired Computing for Economics and Management, (2006). 
[6] 
K. Deb and R. B. Agrawal, Simulated binary crossover for continuous search space,, Complex Systems, 9 (1995), 115. 
[7] 
R. C. Eberhart and Y. H. Shi, Comparison between genetic algorithms and particle swarm optimization,, in, (1998), 611. 
[8] 
D. E. Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning,", Reading: AddisonWesley, (1989). 
[9] 
C. Hamzacebi and F. Kutay, A heuristic approach for finding the global minimum: Adaptive random search technique,, Applied Mathematics and Computation, 173 (2006), 1323. doi: 10.1016/j.amc.2005.05.002. 
[10] 
C. Hamzacebi and F. Kutay, Continous functions minimization by dynamic random search technique,, Applied Mathematical Modeling, 31 (2007), 2189. doi: 10.1016/j.apm.2006.08.015. 
[11] 
R. Hooke and T. A. Jeeves, Direct search solution of numerical and statistical problems,, Journal of the Association for Computing Machinery(ACM), 8 (1961), 212. 
[12] 
J. Kennedy and R. C. Eberhart, Particle swarm optimization,, in, (1995), 1942. 
[13] 
J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the NelderMead simplex method in low dimensions,, SIAM J. OPTIM., 9 (1998), 112. 
[14] 
J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,, IEEE Transaction on Evolutionary Computation, 10 (2006), 281. 
[15] 
J. Y. Li and R. R. Rhinehart, Heuristic random optimization,, Computers and Chemical Engineering, 22 (1998), 427. 
[16] 
T. W. Leung, C. K. Chan and M. D. Troutt, A mixed simulated annealinggenetic algorithm approach to the multibuyer multiitem joint replenishment problem: advantages of metaheuristics,, Journal of Industrial and Management Optimization, 4 (2008), 53. 
[17] 
J. Matyas, Random optimization,, Automation and Remote Control, 26 (1965), 246. 
[18] 
Z. Michalewicz, A modified genetic algorithm for optimal control problems,, Computers Math. Applic, 23 (1992), 83. doi: 10.1016/08981221(92)90094X. 
[19] 
J. A. Nelder and R. Mead, A simplex method for function minimization,, Computer Journal, 7 (1965), 308. 
[20] 
A. K. Qin, V. L. Huang, and P. N. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization,, IEEE Transactions on Evolutionary Computation, 13 (2009), 398. 
[21] 
G. Rudolph, Convergence analysis of canonical genetic algorithms,, IEEE Transactions on Neural Networks, 5 (1994), 96. 
[22] 
D. W. Stroock, "An Introduction to Markov Processes,", Beijing: World Publishing Corporation, (2009). 
[23] 
F. J. Solis and R. J. B. Wets, Minimization by random search techniques,, Mathematics of Operations Research, 6 (1981), 19. 
[24] 
R. Storn and K. V. Price, Differential evolutionaryA simple and efficient heuristic for global optimization over continous spaces,, Journal of Global Optimization, 11 (1997), 341. doi: 10.1023/A:1008202821328. 
[25] 
Y. H. Shi and R. C. Eberhart, Empirical study of particle swarm optimization,, in, (2001), 1945. 
[26] 
T. D. Tran and G. G. Jin, Realcoded genetic algorithm benchmarked on noiseless blackbox optimization testbed,, in, (2010), 1731. 
[27] 
A. H. Wright, Genetic algorithms for real parameter optimization,, in, (1991), 205. 
[28] 
D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization,, IEEE Transactions on Evolutionary Computation, 1 (1997), 67. 
[29] 
K. F. C. Yiu, Y. Liu and K. L. Teo, A hybrid descent method for global optimization,, Journal of Global Optimization, 28 (2004), 229. doi: 10.1023/B:JOGO.0000015313.93974.b0. 
[30] 
X. S. Yang, "Engineering Optimization: An Introduction with Metaheuristic Applications,", Wiley, (2010). 
[31] 
Y. X. Yuan, "Nonlinear Optimization Calculation Method,", Beijing: Science press, (2008). 
[32] 
T. Zhang, Y. J. Zhang, Q. P. Zheng and P. M. Pardalos, A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories on the maketostock and maketoorder management architecture,, Journal of Industrial and Management Optimization, 7 (2011), 31. 
[33] 
X. J. Zhou, C. H. Yang and W. H. Gui, Initial version of state transition algorithm,, in, (2011), 644. 
[34] 
X. J. Zhou, C. H. Yang and W. H. Gui, A new transformation into state transition algorithm for finding the global minimum,, in, (2011), 674. 
show all references
References:
[1] 
G. Albeanu, A monte carlo approach for control search,, Mathematics and Computers in Simulation, 43 (1997), 223. doi: 10.1016/S03784754(96)000699. 
[2] 
H. A. Abbass, A. M. Bagirov and J. Zhang, The discrete gradient evolutionary strategy method for global optimization,, in, 1 (2003), 435. 
[3] 
D. D. Burgess, Rotation in simplex optimization,, Analytica Chimica Acta, 181 (1986), 97. doi: 10.1016/S00032670(00)852241. 
[4] 
F. V. Berth and A. P. Engelbrecht, A study of particle swarm optimization particle trajectories,, Information Sciences, 176 (2006), 937. doi: 10.1016/j.ins.2005.02.003. 
[5] 
P. Collet and J. P. Rennard, "Stochastic Optimization Algorithms,", Handbook of Research on Nature Inspired Computing for Economics and Management, (2006). 
[6] 
K. Deb and R. B. Agrawal, Simulated binary crossover for continuous search space,, Complex Systems, 9 (1995), 115. 
[7] 
R. C. Eberhart and Y. H. Shi, Comparison between genetic algorithms and particle swarm optimization,, in, (1998), 611. 
[8] 
D. E. Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning,", Reading: AddisonWesley, (1989). 
[9] 
C. Hamzacebi and F. Kutay, A heuristic approach for finding the global minimum: Adaptive random search technique,, Applied Mathematics and Computation, 173 (2006), 1323. doi: 10.1016/j.amc.2005.05.002. 
[10] 
C. Hamzacebi and F. Kutay, Continous functions minimization by dynamic random search technique,, Applied Mathematical Modeling, 31 (2007), 2189. doi: 10.1016/j.apm.2006.08.015. 
[11] 
R. Hooke and T. A. Jeeves, Direct search solution of numerical and statistical problems,, Journal of the Association for Computing Machinery(ACM), 8 (1961), 212. 
[12] 
J. Kennedy and R. C. Eberhart, Particle swarm optimization,, in, (1995), 1942. 
[13] 
J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the NelderMead simplex method in low dimensions,, SIAM J. OPTIM., 9 (1998), 112. 
[14] 
J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,, IEEE Transaction on Evolutionary Computation, 10 (2006), 281. 
[15] 
J. Y. Li and R. R. Rhinehart, Heuristic random optimization,, Computers and Chemical Engineering, 22 (1998), 427. 
[16] 
T. W. Leung, C. K. Chan and M. D. Troutt, A mixed simulated annealinggenetic algorithm approach to the multibuyer multiitem joint replenishment problem: advantages of metaheuristics,, Journal of Industrial and Management Optimization, 4 (2008), 53. 
[17] 
J. Matyas, Random optimization,, Automation and Remote Control, 26 (1965), 246. 
[18] 
Z. Michalewicz, A modified genetic algorithm for optimal control problems,, Computers Math. Applic, 23 (1992), 83. doi: 10.1016/08981221(92)90094X. 
[19] 
J. A. Nelder and R. Mead, A simplex method for function minimization,, Computer Journal, 7 (1965), 308. 
[20] 
A. K. Qin, V. L. Huang, and P. N. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization,, IEEE Transactions on Evolutionary Computation, 13 (2009), 398. 
[21] 
G. Rudolph, Convergence analysis of canonical genetic algorithms,, IEEE Transactions on Neural Networks, 5 (1994), 96. 
[22] 
D. W. Stroock, "An Introduction to Markov Processes,", Beijing: World Publishing Corporation, (2009). 
[23] 
F. J. Solis and R. J. B. Wets, Minimization by random search techniques,, Mathematics of Operations Research, 6 (1981), 19. 
[24] 
R. Storn and K. V. Price, Differential evolutionaryA simple and efficient heuristic for global optimization over continous spaces,, Journal of Global Optimization, 11 (1997), 341. doi: 10.1023/A:1008202821328. 
[25] 
Y. H. Shi and R. C. Eberhart, Empirical study of particle swarm optimization,, in, (2001), 1945. 
[26] 
T. D. Tran and G. G. Jin, Realcoded genetic algorithm benchmarked on noiseless blackbox optimization testbed,, in, (2010), 1731. 
[27] 
A. H. Wright, Genetic algorithms for real parameter optimization,, in, (1991), 205. 
[28] 
D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization,, IEEE Transactions on Evolutionary Computation, 1 (1997), 67. 
[29] 
K. F. C. Yiu, Y. Liu and K. L. Teo, A hybrid descent method for global optimization,, Journal of Global Optimization, 28 (2004), 229. doi: 10.1023/B:JOGO.0000015313.93974.b0. 
[30] 
X. S. Yang, "Engineering Optimization: An Introduction with Metaheuristic Applications,", Wiley, (2010). 
[31] 
Y. X. Yuan, "Nonlinear Optimization Calculation Method,", Beijing: Science press, (2008). 
[32] 
T. Zhang, Y. J. Zhang, Q. P. Zheng and P. M. Pardalos, A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories on the maketostock and maketoorder management architecture,, Journal of Industrial and Management Optimization, 7 (2011), 31. 
[33] 
X. J. Zhou, C. H. Yang and W. H. Gui, Initial version of state transition algorithm,, in, (2011), 644. 
[34] 
X. J. Zhou, C. H. Yang and W. H. Gui, A new transformation into state transition algorithm for finding the global minimum,, in, (2011), 674. 
[1] 
Jianjun Liu, Min Zeng, Yifan Ge, Changzhi Wu, Xiangyu Wang. Improved Cuckoo Search algorithm for numerical function optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 113. doi: 10.3934/jimo.2018142 
[2] 
LeongKwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 193207. doi: 10.3934/naco.2014.4.193 
[3] 
Behrouz Kheirfam, Morteza Moslemi. On the extension of an arcsearch interiorpoint algorithm for semidefinite optimization. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 261275. doi: 10.3934/naco.2018015 
[4] 
Mohamed A. Tawhid, Ahmed F. Ali. An effective hybrid firefly algorithm with the cuckoo search for engineering optimization problems. Mathematical Foundations of Computing, 2018, 1 (4) : 349368. doi: 10.3934/mfc.2018017 
[5] 
LeongKwan Li, Sally Shao, K. F. Cedric Yiu. Nonlinear dynamical system modeling via recurrent neural networks and a weighted state space search algorithm. Journal of Industrial & Management Optimization, 2011, 7 (2) : 385400. doi: 10.3934/jimo.2011.7.385 
[6] 
Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial & Management Optimization, 2010, 6 (1) : 177196. doi: 10.3934/jimo.2010.6.177 
[7] 
Chunlin Hao, Xinwei Liu. Global convergence of an SQP algorithm for nonlinear optimization with overdetermined constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 1929. doi: 10.3934/naco.2012.2.19 
[8] 
Tao Zhang, YueJie Zhang, Qipeng P. Zheng, P. M. Pardalos. A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories based on the MakeToStock and MakeToOrder management architecture. Journal of Industrial & Management Optimization, 2011, 7 (1) : 3151. doi: 10.3934/jimo.2011.7.31 
[9] 
Qiang Long, Changzhi Wu. A hybrid method combining genetic algorithm and HookeJeeves method for constrained global optimization. Journal of Industrial & Management Optimization, 2014, 10 (4) : 12791296. doi: 10.3934/jimo.2014.10.1279 
[10] 
Kien Ming Ng, Trung Hieu Tran. A parallel water flow algorithm with local search for solving the quadratic assignment problem. Journal of Industrial & Management Optimization, 2019, 15 (1) : 235259. doi: 10.3934/jimo.2018041 
[11] 
MingJong Yao, TienCheng Hsu. An efficient search algorithm for obtaining the optimal replenishment strategies in multistage justintime supply chain systems. Journal of Industrial & Management Optimization, 2009, 5 (1) : 1132. doi: 10.3934/jimo.2009.5.11 
[12] 
AbdelRahman Hedar, Ahmed Fouad Ali, Taysir Hassan AbdelHamid. Genetic algorithm and Tabu search based methods for molecular 3Dstructure prediction. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 191209. doi: 10.3934/naco.2011.1.191 
[13] 
Y. K. Lin, C. S. Chong. A tabu search algorithm to minimize total weighted tardiness for the job shop scheduling problem. Journal of Industrial & Management Optimization, 2016, 12 (2) : 703717. doi: 10.3934/jimo.2016.12.703 
[14] 
Behrad Erfani, Sadoullah Ebrahimnejad, Amirhossein Moosavi. An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGAII and local search algorithm. Journal of Industrial & Management Optimization, 2017, 13 (5) : 134. doi: 10.3934/jimo.2019030 
[15] 
Zhong Wan, Chaoming Hu, Zhanlu Yang. A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search. Discrete & Continuous Dynamical Systems  B, 2011, 16 (4) : 11571169. doi: 10.3934/dcdsb.2011.16.1157 
[16] 
Mingyong Lai, Xiaojiao Tong. A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search. Journal of Industrial & Management Optimization, 2012, 8 (2) : 469484. doi: 10.3934/jimo.2012.8.469 
[17] 
Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial & Management Optimization, 2012, 8 (2) : 457468. doi: 10.3934/jimo.2012.8.457 
[18] 
Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for nonconvex sparse optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 113. doi: 10.3934/jimo.2018134 
[19] 
Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial & Management Optimization, 2019, 15 (2) : 909932. doi: 10.3934/jimo.2018077 
[20] 
Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete & Continuous Dynamical Systems  A, 2015, 35 (5) : 21652175. doi: 10.3934/dcds.2015.35.2165 
2017 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]