April  2012, 8(2): 391-410. doi: 10.3934/jimo.2012.8.391

The dependence of assets and default threshold with thinning-dependence structure

1. 

Department of Mathematics and Center for Financial Engineering, Soochow University, Suzhou 215006, China, China

Received  October 2010 Revised  October 2011 Published  April 2012

In this paper, we model the value of a firm and a default threshold using two dependent jump-diffusion processes. We give the explicit solutions for the Laplace transform of the first passage time and the expected discounted ratio of the firm value to the default threshold at default, and show the impact of dependent jumps of the firm value and the default threshold on the default probabilities and the spreads of corporate defaultable bonds.
Citation: Yinghui Dong, Guojing Wang. The dependence of assets and default threshold with thinning-dependence structure. Journal of Industrial & Management Optimization, 2012, 8 (2) : 391-410. doi: 10.3934/jimo.2012.8.391
References:
[1]

T. Bielecki and M. Rutkowski, "Credit Risk: Modeling, Valuation and Hedging,", Springer Finance, (2002).

[2]

F. Black and J. Cox, Valuing corporate securities liabilities: Some effects of bond indenture provisions,, J. Finan., 31 (1976), 351. doi: 10.2307/2326607.

[3]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Polit. Econ., 81 (1973), 637. doi: 10.1086/260062.

[4]

N. Cai, On first passage times of a hyper-exponential jump diffusion process,, Oper. Res. Lett., 37 (2009), 127. doi: 10.1016/j.orl.2009.01.002.

[5]

N. Chen and S. G. Kou, Credit spreads, optiomal capital structure, and implied volatility with endogenous defaults and jump risk,, Math. Financ., 19 (2009), 343. doi: 10.1111/j.1467-9965.2009.00375.x.

[6]

Y. C. Chi, Analysis of expected discounted penalty function for a general jump-diffusion risk model and applications in finance,, Insurance Math. Econom., 46 (2010), 385. doi: 10.1016/j.insmatheco.2009.12.004.

[7]

P. Collin-Dufresne and R. S. Goldstein, Do credit spreads reflect stationary leverage ratios?,, J. Finan., 56 (2001), 1929. doi: 10.1111/0022-1082.00395.

[8]

D. Duffie and K. Singleton, Modeling term structure of defaultable bond,, Rev. Financ. Stud., 12 (1999), 687. doi: 10.1093/rfs/12.4.687.

[9]

D. Duffie and D. Lando, Term structures of credit spreads with incomplete accounting information,, Econometrica, 69 (2001), 633. doi: 10.1111/1468-0262.00208.

[10]

F. Dufresne and H. U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion,, Insurance Math. Econom., 10 (1991), 51. doi: 10.1016/0167-6687(91)90023-Q.

[11]

H. U. Gerber and B. Landry, On the discounted penalty at ruin in a jump-diffusion and the perpetual put option,, Insurance Math. Econom., 22 (1998), 263. doi: 10.1016/S0167-6687(98)00014-6.

[12]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin,, N. Amer. Actuarial J., 2 (1998), 48.

[13]

K. Giesecke and L. Goldberg, Forecasting default in the face of uncertainty,, J. Derivatives, 12 (2004), 14. doi: 10.3905/jod.2004.434534.

[14]

R. Goldstein, N. Ju and H. Leland, An EBIT-based model of dynamic capital structure,, J. Bus., 74 (2001), 483. doi: 10.1086/322893.

[15]

B. Hilberink and L. C. G. Rogers, Optimal capital structure and endogenous default,, Financ. Stoch, 6 (2002), 237. doi: 10.1007/s007800100058.

[16]

J. Z. Huang and M. Huang, How much of the corporate-treasury yield spread is due to credit risk?: A new calibration approach,, in, (2003).

[17]

J. Z. Huang and H. Zhou, Specification analysis of structual credit risk models,, in, (2008).

[18]

R. Jarrow and S. Turnbull, Pricing derivatives on financial securities subject to default risk,, J. Finan., 50 (1995), 53. doi: 10.2307/2329239.

[19]

N. Ju and H. Ou-Yang, Capital structure, debt maturity, and stochastic interest rates,, J. Bus., 79 (2006), 2469. doi: 10.1086/505241.

[20]

S. G. Kou, A jump-diffusion model for option pricing,, Manag. Sci., 48 (2002), 1086. doi: 10.1287/mnsc.48.8.1086.166.

[21]

S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model,, Manag. Sci., 50 (2004), 1178.

[22]

S. G. Kou and H. Wang, First passage times of a jump diffusion process,, Adv. App. Probab., 35 (2003), 504.

[23]

D. Lando, "Credit Risk Modeling: Theory and Applications,", Princeton Series in Finance, (2004).

[24]

H. E. Leland, Corporate debt value, bond covenants, and optimal capital structure,, J. Finan., 49 (1994), 1213. doi: 10.2307/2329184.

[25]

H. Leland and K. B. Toft, Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads,, J. Finan., 51 (1996), 987. doi: 10.2307/2329229.

[26]

F. Longstaff and E. Schwartz, Valuing risky debt: A new approach,, J. Finan., 50 (1995), 789. doi: 10.2307/2329288.

[27]

D. B. Madan and H. Unal, Pricing the risks of default,, Rev. Deriv. Res., 2 (1998), 121. doi: 10.1007/BF01531333.

[28]

R. C. Merton, On the pricing of corporate debt: The risky structure of interest rates,, J. Finan., 29 (1974), 449. doi: 10.2307/2978814.

[29]

C. A. Ramezani and Y. Zeng, Maximum likelihood estimation of the double exponential jump-diffusion process,, Ann. Finan., 3 (2007), 487. doi: 10.1007/s10436-006-0062-y.

[30]

S. M. Ross, "Stochastic Processes," Second edition,, Wiley Series in Probability and Statistics: Probability and Statistics, (1996).

[31]

J. Ruf, "Structural Default Models with Jumps,", Ph.D thesis, (2006).

[32]

T. Schmidt and A. Novikov, A structural model with unobserved default boundary,, Appl. Math. Finan., 15 (2008), 183. doi: 10.1080/13504860701718281.

[33]

G. J. Wang and K. C. Yuen, On a correlated aggregate claims model with thinning-dependence structure,, Insurance Math. Econom., 36 (2005), 456. doi: 10.1016/j.insmatheco.2005.04.004.

[34]

Z. M. Zhang, H. Yang and S. M. Li, The perturbed compound Poisson risk model with two-sided jumps,, J. Comput. Appl. Math., 233 (2010), 1773. doi: 10.1016/j.cam.2009.09.014.

[35]

C. S. Zhou, The term structure of credit spreads with jump risk,, J. Bank. Finan., 25 (2001), 2015. doi: 10.1016/S0378-4266(00)00168-0.

show all references

References:
[1]

T. Bielecki and M. Rutkowski, "Credit Risk: Modeling, Valuation and Hedging,", Springer Finance, (2002).

[2]

F. Black and J. Cox, Valuing corporate securities liabilities: Some effects of bond indenture provisions,, J. Finan., 31 (1976), 351. doi: 10.2307/2326607.

[3]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Polit. Econ., 81 (1973), 637. doi: 10.1086/260062.

[4]

N. Cai, On first passage times of a hyper-exponential jump diffusion process,, Oper. Res. Lett., 37 (2009), 127. doi: 10.1016/j.orl.2009.01.002.

[5]

N. Chen and S. G. Kou, Credit spreads, optiomal capital structure, and implied volatility with endogenous defaults and jump risk,, Math. Financ., 19 (2009), 343. doi: 10.1111/j.1467-9965.2009.00375.x.

[6]

Y. C. Chi, Analysis of expected discounted penalty function for a general jump-diffusion risk model and applications in finance,, Insurance Math. Econom., 46 (2010), 385. doi: 10.1016/j.insmatheco.2009.12.004.

[7]

P. Collin-Dufresne and R. S. Goldstein, Do credit spreads reflect stationary leverage ratios?,, J. Finan., 56 (2001), 1929. doi: 10.1111/0022-1082.00395.

[8]

D. Duffie and K. Singleton, Modeling term structure of defaultable bond,, Rev. Financ. Stud., 12 (1999), 687. doi: 10.1093/rfs/12.4.687.

[9]

D. Duffie and D. Lando, Term structures of credit spreads with incomplete accounting information,, Econometrica, 69 (2001), 633. doi: 10.1111/1468-0262.00208.

[10]

F. Dufresne and H. U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion,, Insurance Math. Econom., 10 (1991), 51. doi: 10.1016/0167-6687(91)90023-Q.

[11]

H. U. Gerber and B. Landry, On the discounted penalty at ruin in a jump-diffusion and the perpetual put option,, Insurance Math. Econom., 22 (1998), 263. doi: 10.1016/S0167-6687(98)00014-6.

[12]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin,, N. Amer. Actuarial J., 2 (1998), 48.

[13]

K. Giesecke and L. Goldberg, Forecasting default in the face of uncertainty,, J. Derivatives, 12 (2004), 14. doi: 10.3905/jod.2004.434534.

[14]

R. Goldstein, N. Ju and H. Leland, An EBIT-based model of dynamic capital structure,, J. Bus., 74 (2001), 483. doi: 10.1086/322893.

[15]

B. Hilberink and L. C. G. Rogers, Optimal capital structure and endogenous default,, Financ. Stoch, 6 (2002), 237. doi: 10.1007/s007800100058.

[16]

J. Z. Huang and M. Huang, How much of the corporate-treasury yield spread is due to credit risk?: A new calibration approach,, in, (2003).

[17]

J. Z. Huang and H. Zhou, Specification analysis of structual credit risk models,, in, (2008).

[18]

R. Jarrow and S. Turnbull, Pricing derivatives on financial securities subject to default risk,, J. Finan., 50 (1995), 53. doi: 10.2307/2329239.

[19]

N. Ju and H. Ou-Yang, Capital structure, debt maturity, and stochastic interest rates,, J. Bus., 79 (2006), 2469. doi: 10.1086/505241.

[20]

S. G. Kou, A jump-diffusion model for option pricing,, Manag. Sci., 48 (2002), 1086. doi: 10.1287/mnsc.48.8.1086.166.

[21]

S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model,, Manag. Sci., 50 (2004), 1178.

[22]

S. G. Kou and H. Wang, First passage times of a jump diffusion process,, Adv. App. Probab., 35 (2003), 504.

[23]

D. Lando, "Credit Risk Modeling: Theory and Applications,", Princeton Series in Finance, (2004).

[24]

H. E. Leland, Corporate debt value, bond covenants, and optimal capital structure,, J. Finan., 49 (1994), 1213. doi: 10.2307/2329184.

[25]

H. Leland and K. B. Toft, Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads,, J. Finan., 51 (1996), 987. doi: 10.2307/2329229.

[26]

F. Longstaff and E. Schwartz, Valuing risky debt: A new approach,, J. Finan., 50 (1995), 789. doi: 10.2307/2329288.

[27]

D. B. Madan and H. Unal, Pricing the risks of default,, Rev. Deriv. Res., 2 (1998), 121. doi: 10.1007/BF01531333.

[28]

R. C. Merton, On the pricing of corporate debt: The risky structure of interest rates,, J. Finan., 29 (1974), 449. doi: 10.2307/2978814.

[29]

C. A. Ramezani and Y. Zeng, Maximum likelihood estimation of the double exponential jump-diffusion process,, Ann. Finan., 3 (2007), 487. doi: 10.1007/s10436-006-0062-y.

[30]

S. M. Ross, "Stochastic Processes," Second edition,, Wiley Series in Probability and Statistics: Probability and Statistics, (1996).

[31]

J. Ruf, "Structural Default Models with Jumps,", Ph.D thesis, (2006).

[32]

T. Schmidt and A. Novikov, A structural model with unobserved default boundary,, Appl. Math. Finan., 15 (2008), 183. doi: 10.1080/13504860701718281.

[33]

G. J. Wang and K. C. Yuen, On a correlated aggregate claims model with thinning-dependence structure,, Insurance Math. Econom., 36 (2005), 456. doi: 10.1016/j.insmatheco.2005.04.004.

[34]

Z. M. Zhang, H. Yang and S. M. Li, The perturbed compound Poisson risk model with two-sided jumps,, J. Comput. Appl. Math., 233 (2010), 1773. doi: 10.1016/j.cam.2009.09.014.

[35]

C. S. Zhou, The term structure of credit spreads with jump risk,, J. Bank. Finan., 25 (2001), 2015. doi: 10.1016/S0378-4266(00)00168-0.

[1]

Ishak Alia. A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Mathematical Control & Related Fields, 2019, 9 (3) : 541-570. doi: 10.3934/mcrf.2019025

[2]

Xin Zhang, Hui Meng, Jie Xiong, Yang Shen. Robust optimal investment and reinsurance of an insurer under Jump-diffusion models. Mathematical Control & Related Fields, 2019, 9 (1) : 59-76. doi: 10.3934/mcrf.2019003

[3]

Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control & Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21

[4]

Isabelle Kuhwald, Ilya Pavlyukevich. Bistable behaviour of a jump-diffusion driven by a periodic stable-like additive process. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3175-3190. doi: 10.3934/dcdsb.2016092

[5]

Chuancun Yin, Kam Chuen Yuen. Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1247-1262. doi: 10.3934/jimo.2015.11.1247

[6]

Dan Li, Jing'an Cui, Yan Zhang. Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2069-2088. doi: 10.3934/dcdsb.2015.20.2069

[7]

Qing-Qing Yang, Wai-Ki Ching, Wanhua He, Tak-Kuen Siu. Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales. Journal of Industrial & Management Optimization, 2019, 15 (1) : 293-318. doi: 10.3934/jimo.2018044

[8]

Wuyuan Jiang. The maximum surplus before ruin in a jump-diffusion insurance risk process with dependence. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3037-3050. doi: 10.3934/dcdsb.2018298

[9]

Qiang Du, Zhan Huang, Richard B. Lehoucq. Nonlocal convection-diffusion volume-constrained problems and jump processes. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 373-389. doi: 10.3934/dcdsb.2014.19.373

[10]

Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial & Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783

[11]

Tianyuan Xu, Shanming Ji, Chunhua Jin, Ming Mei, Jingxue Yin. Early and late stage profiles for a chemotaxis model with density-dependent jump probability. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1345-1385. doi: 10.3934/mbe.2018062

[12]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

[13]

Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial & Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31

[14]

Xian Chen, Zhi-Ming Ma. A transformation of Markov jump processes and applications in genetic study. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5061-5084. doi: 10.3934/dcds.2014.34.5061

[15]

Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591

[16]

Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058

[17]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[18]

Risei Kano. The existence of solutions for tumor invasion models with time and space dependent diffusion. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 63-74. doi: 10.3934/dcdss.2014.7.63

[19]

Kenichi Fujishiro, Yavar Kian. Determination of time dependent factors of coefficients in fractional diffusion equations. Mathematical Control & Related Fields, 2016, 6 (2) : 251-269. doi: 10.3934/mcrf.2016003

[20]

Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]