
Previous Article
Portfolio optimization and risk measurement based on nondominated sorting genetic algorithm
 JIMO Home
 This Issue

Next Article
Singleperiod inventory model with discrete stochastic demand based on prospect theory
A MaxMin clustering method for $k$means algorithm of data clustering
1.  School of Information Engineering, Hangzhou Dianzi University, Hangzhou 310012, China 
2.  School of Software Engineering, Hangzhou Dianzi University, Hangzhou 310012, China 
3.  School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China 
References:
[1] 
V. S. Ananthanarayana, M. Narasimha Murty and D. K. Subramanian, Rapid and brief communication efficient clustering of large data sets,, Pattern Recognition, 34 (2001), 2561. 
[2] 
Sanghamitra Bandyopadhyay and Ujjwal Maulik, An evolutionary technique based on Kmeans algorithm for optimal clustering in $R^N$,, Information Sciences, 146 (2002), 221. 
[3] 
Bjarni Bodvarsson, M. Morkebjerg, L. K. Hansen, G. M. Knudsen and C. Svarer, Extraction of time activity curves from positron emission tomography: Kmeans clustering or nonnegative matrix factorization,, NeuroImage, 31 (2006), 185. 
[4] 
Paul S. Bradley and Usama M. Fayyad, Refining maxmin points for Kmeans clustering,, in, (1998), 91. 
[5] 
P. S. Bradley, O. L. Mangasarian and W. N. Street, Clustering via concave minimization,, in, (1996), 368. 
[6] 
R. O. Duda, P. E. Hart and D. G. Stork, "Pattern Classification," second edition,, WileyInterscience, (2001). 
[7] 
David J. Hand and Wojtek J. Krzanowski, Optimising kmeans clustering results with standard software packages,, Computational Statistics & Data Analysis, 49 (2005), 969. 
[8] 
A. K. Jain and R. C. Dubes, "Algorithms for Clustering Data,", Prentice Hall Advanced Reference Series, (1988). 
[9] 
Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman and Angela Y. Wu, A local search approximation algorithm for kmeans clustering,, Computational Geometry, 28 (2004), 89. 
[10] 
Shehroz S. Khan and Amir Ahmad, Cluster center maxminization algorithm for Kmeans clustering,, Pattern Recognition Letters, 25 (2004), 1293. doi: 10.1016/j.patrec.2004.04.007. 
[11] 
R. J. Kuo, H. S. Wang, TungLai Hu and S. H. Chou, Application of ant Kmeans on clustering analysis,, Computers & Mathematics with Applications, 50 (2005), 1709. 
[12] 
Youssef M. Marzouk and Ahmed F. Ghoniem, Kmeans clustering for optimal partitioning and dynamic load balancing of parallel hierarchical Nbody simulations,, Journal of Computational Physics, 207 (2005), 493. 
[13] 
Boris Mirkin, Clustering algorithms: A review,, in, (1996), 109. 
[14] 
Boris Mirkin, Kmeans clustering,, in, (2005), 75. 
[15] 
Boris Mirkin, Concept learning and feature selection based on squareerror clustering,, Machine Learning, 35 (1999), 25. 
[16] 
D. J. Newman, S. Hettich, C. L. Blake and C. J. Merz, "UCI Repository of Machine Learning Databases,", University of California, (1998). 
[17] 
Makoto Otsubo, Katsushi Sato and Atsushi Yamaji, Computerized identification of stress tensors determined from heterogeneous faultslip data by combining the multiple inverse method and kmeans clustering,, Journal of Structural Geology, 28 (2006), 991. 
[18] 
Georg Peters, Some refinements of rough kmeans clustering,, Pattern Recognition, 39 (2006), 1481. 
[19] 
S. Z. Selim and M. A. Ismail, Kmeans type algorithms: A generalized convergence theorem and characterization of local optimality,, IEEE Trans. Pattern Anal. Mach. Inteli, 6 (1984), 81. 
[20] 
Y. Yuan, J. Yan and C. Xu, Polynomial Smooth Support Vector Machine(PSSVM),, Chinese Journal Of Computers, 28 (2005), 9. 
[21] 
Y. Yuan and T. Huang, A Polynomial Smooth Support Vector Machine for Classification,, Lecture Note in Artificial Intelligence, 3584 (2005), 157. 
[22] 
Y. Yuan, W. G. Fan and D. M. Pu, Spline function smooth support vector machine for classification,, Journal of Industrial Management and Optimization, 3 (2007), 529. 
show all references
References:
[1] 
V. S. Ananthanarayana, M. Narasimha Murty and D. K. Subramanian, Rapid and brief communication efficient clustering of large data sets,, Pattern Recognition, 34 (2001), 2561. 
[2] 
Sanghamitra Bandyopadhyay and Ujjwal Maulik, An evolutionary technique based on Kmeans algorithm for optimal clustering in $R^N$,, Information Sciences, 146 (2002), 221. 
[3] 
Bjarni Bodvarsson, M. Morkebjerg, L. K. Hansen, G. M. Knudsen and C. Svarer, Extraction of time activity curves from positron emission tomography: Kmeans clustering or nonnegative matrix factorization,, NeuroImage, 31 (2006), 185. 
[4] 
Paul S. Bradley and Usama M. Fayyad, Refining maxmin points for Kmeans clustering,, in, (1998), 91. 
[5] 
P. S. Bradley, O. L. Mangasarian and W. N. Street, Clustering via concave minimization,, in, (1996), 368. 
[6] 
R. O. Duda, P. E. Hart and D. G. Stork, "Pattern Classification," second edition,, WileyInterscience, (2001). 
[7] 
David J. Hand and Wojtek J. Krzanowski, Optimising kmeans clustering results with standard software packages,, Computational Statistics & Data Analysis, 49 (2005), 969. 
[8] 
A. K. Jain and R. C. Dubes, "Algorithms for Clustering Data,", Prentice Hall Advanced Reference Series, (1988). 
[9] 
Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman and Angela Y. Wu, A local search approximation algorithm for kmeans clustering,, Computational Geometry, 28 (2004), 89. 
[10] 
Shehroz S. Khan and Amir Ahmad, Cluster center maxminization algorithm for Kmeans clustering,, Pattern Recognition Letters, 25 (2004), 1293. doi: 10.1016/j.patrec.2004.04.007. 
[11] 
R. J. Kuo, H. S. Wang, TungLai Hu and S. H. Chou, Application of ant Kmeans on clustering analysis,, Computers & Mathematics with Applications, 50 (2005), 1709. 
[12] 
Youssef M. Marzouk and Ahmed F. Ghoniem, Kmeans clustering for optimal partitioning and dynamic load balancing of parallel hierarchical Nbody simulations,, Journal of Computational Physics, 207 (2005), 493. 
[13] 
Boris Mirkin, Clustering algorithms: A review,, in, (1996), 109. 
[14] 
Boris Mirkin, Kmeans clustering,, in, (2005), 75. 
[15] 
Boris Mirkin, Concept learning and feature selection based on squareerror clustering,, Machine Learning, 35 (1999), 25. 
[16] 
D. J. Newman, S. Hettich, C. L. Blake and C. J. Merz, "UCI Repository of Machine Learning Databases,", University of California, (1998). 
[17] 
Makoto Otsubo, Katsushi Sato and Atsushi Yamaji, Computerized identification of stress tensors determined from heterogeneous faultslip data by combining the multiple inverse method and kmeans clustering,, Journal of Structural Geology, 28 (2006), 991. 
[18] 
Georg Peters, Some refinements of rough kmeans clustering,, Pattern Recognition, 39 (2006), 1481. 
[19] 
S. Z. Selim and M. A. Ismail, Kmeans type algorithms: A generalized convergence theorem and characterization of local optimality,, IEEE Trans. Pattern Anal. Mach. Inteli, 6 (1984), 81. 
[20] 
Y. Yuan, J. Yan and C. Xu, Polynomial Smooth Support Vector Machine(PSSVM),, Chinese Journal Of Computers, 28 (2005), 9. 
[21] 
Y. Yuan and T. Huang, A Polynomial Smooth Support Vector Machine for Classification,, Lecture Note in Artificial Intelligence, 3584 (2005), 157. 
[22] 
Y. Yuan, W. G. Fan and D. M. Pu, Spline function smooth support vector machine for classification,, Journal of Industrial Management and Optimization, 3 (2007), 529. 
[1] 
Baoli Shi, ZhiFeng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the Kmeans clustering strategy. Inverse Problems & Imaging, 2016, 10 (3) : 807828. doi: 10.3934/ipi.2016022 
[2] 
Ruiqi Yang, Dachuan Xu, Yicheng Xu, Dongmei Zhang. An adaptive probabilistic algorithm for online kcenter clustering. Journal of Industrial & Management Optimization, 2019, 15 (2) : 565576. doi: 10.3934/jimo.2018057 
[3] 
Guojun Gan, Qiujun Lan, Shiyang Sima. Scalable clustering by truncated fuzzy $c$means. Big Data & Information Analytics, 2016, 1 (2&3) : 247259. doi: 10.3934/bdia.2016007 
[4] 
Haixia Liu, JianFeng Cai, Yang Wang. Subspace clustering by (k,k)sparse matrix factorization. Inverse Problems & Imaging, 2017, 11 (3) : 539551. doi: 10.3934/ipi.2017025 
[5] 
Sung Ha Kang, Berta Sandberg, Andy M. Yip. A regularized kmeans and multiphase scale segmentation. Inverse Problems & Imaging, 2011, 5 (2) : 407429. doi: 10.3934/ipi.2011.5.407 
[6] 
Gurkan Ozturk, Mehmet Tahir Ciftci. Clustering based polyhedral conic functions algorithm in classification. Journal of Industrial & Management Optimization, 2015, 11 (3) : 921932. doi: 10.3934/jimo.2015.11.921 
[7] 
Renato Bruni, Gianpiero Bianchi, Alessandra Reale. A combinatorial optimization approach to the selection of statistical units. Journal of Industrial & Management Optimization, 2016, 12 (2) : 515527. doi: 10.3934/jimo.2016.12.515 
[8] 
Jinyuan Zhang, Aimin Zhou, Guixu Zhang, Hu Zhang. A clustering based mate selection for evolutionary optimization. Big Data & Information Analytics, 2017, 2 (1) : 7785. doi: 10.3934/bdia.2017010 
[9] 
Qinglei Zhang, Wenying Feng. Detecting coalition attacks in online advertising: A hybrid data mining approach. Big Data & Information Analytics, 2016, 1 (2&3) : 227245. doi: 10.3934/bdia.2016006 
[10] 
Zhen Mei. Manifold data mining helps businesses grow more effectively. Big Data & Information Analytics, 2016, 1 (2&3) : 275276. doi: 10.3934/bdia.2016009 
[11] 
Sunmoo Yoon, Maria Patrao, Debbie Schauer, Jose Gutierrez. Prediction models for burden of caregivers applying data mining techniques. Big Data & Information Analytics, 2017, 2 (5) : 19. doi: 10.3934/bdia.2017014 
[12] 
Anupama N, Sudarson Jena. A novel approach using incremental under sampling for data stream mining. Big Data & Information Analytics, 2017, 2 (5) : 113. doi: 10.3934/bdia.2017017 
[13] 
JianWu Xue, XiaoKun Xu, Feng Zhang. Big data dynamic compressive sensing system architecture and optimization algorithm for internet of things. Discrete & Continuous Dynamical Systems  S, 2015, 8 (6) : 14011414. doi: 10.3934/dcdss.2015.8.1401 
[14] 
Guojun Gan, Kun Chen. A soft subspace clustering algorithm with logtransformed distances. Big Data & Information Analytics, 2016, 1 (1) : 93109. doi: 10.3934/bdia.2016.1.93 
[15] 
Jiangchuan Fan, Xinyu Guo, Jianjun Du, Weiliang Wen, Xianju Lu, Brahmani Louiza. Analysis of the clustering fusion algorithm for multiband color image. Discrete & Continuous Dynamical Systems  S, 2019, 12 (4&5) : 12331249. doi: 10.3934/dcdss.2019085 
[16] 
Simone Göttlich, Oliver Kolb, Sebastian Kühn. Optimization for a special class of traffic flow models: Combinatorial and continuous approaches. Networks & Heterogeneous Media, 2014, 9 (2) : 315334. doi: 10.3934/nhm.2014.9.315 
[17] 
Feyza Gürbüz, Panos M. Pardalos. A decision making process application for the slurry production in ceramics via fuzzy cluster and data mining. Journal of Industrial & Management Optimization, 2012, 8 (2) : 285297. doi: 10.3934/jimo.2012.8.285 
[18] 
Gaidi Li, Zhen Wang, Dachuan Xu. An approximation algorithm for the $k$level facility location problem with submodular penalties. Journal of Industrial & Management Optimization, 2012, 8 (3) : 521529. doi: 10.3934/jimo.2012.8.521 
[19] 
Débora A. F. Albanez, Maicon J. Benvenutti. Continuous data assimilation algorithm for simplified Bardina model. Evolution Equations & Control Theory, 2018, 7 (1) : 3352. doi: 10.3934/eect.2018002 
[20] 
Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial & Management Optimization, 2012, 8 (2) : 457468. doi: 10.3934/jimo.2012.8.457 
2017 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]