October  2012, 8(4): 895-908. doi: 10.3934/jimo.2012.8.895

Analysis of customers' impatience in an M/M/1 queue with working vacations

1. 

Department of Statistics, College of Sciences, Yanshan University, Qinhuangdao 066004, China

2. 

Department of Intelligence and Informatics, Konan University, 8-9-1 Okamoto, Kobe 658-8501

Received  September 2011 Revised  July 2012 Published  September 2012

In this paper, we analyze an M/M/1 queueing system with working vacations and impatient customers. We examine the case that the customers' impatience is due to a working vacation. During a working vacation, customers are served at a slower than usual service rate and are likely to become impatient. Whenever a customer arrives in the system and realizes that the server is on vacation, the customer activates an ``impatience timer" which is exponentially distributed. If a customer's service has not been completed before the customer's timer expires, the customer leaves the queue, never to return. By analyzing this model, we derive the probability generating functions of the number of customers in the system when the server is in a service period and a working vacation, respectively. We further obtain the closed-form expressions for various performance measures, including the mean system size, the mean sojourn time of a customer served, the proportion of customers served and the rate of abandonment due to impatience. Finally, we present some numerical results to demonstrate effects of some parameters on these performance measures of the system.
Citation: Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895
References:
[1]

R. O. Al-Seedy, S. A. El-Shehawy, A. A. El-Sherbiny and S. I. Ammar, Transient solution of the M/M/c queue with balking and reneging,, Computers and Mathematics with Applications, 57 (2009), 1280. doi: 10.1016/j.camwa.2009.01.017. Google Scholar

[2]

E. Altman and U. Yechiali, Analysis of customers' impatience in queues with server vacations,, Queueing Systems, 52 (2006), 261. doi: 10.1007/s11134-006-6134-x. Google Scholar

[3]

E. Altman and U. Yechiali, Infinite-server queues with systems' additional task and impatient customers,, Probability in the Engineering and Informational Sciences, 22 (2008), 477. doi: 10.1017/S0269964808000296. Google Scholar

[4]

Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations,, Operations Research Letters, 33 (2005), 201. doi: 10.1016/j.orl.2004.05.006. Google Scholar

[5]

F. Baccelli, P. Boyer and G. Hebuterne, Single-server queues with impatient customers,, Advances in Applied Probability, 16 (1984), 887. doi: 10.2307/1427345. Google Scholar

[6]

A. D. Banik, U. C. Gupta and S. S. Pathak, On the GI/M/1/N queue with multiple vacation-analytic analysis and computation,, Applied Mathematical Modelling, 31 (2007), 1701. doi: 10.1016/j.apm.2006.05.010. Google Scholar

[7]

S. Benjaafar, J. Gayon and S. Tepe, Optimal control of a production-inventory system with customer impatience,, Operations Research Letters, 38 (2010), 267. doi: 10.1016/j.orl.2010.03.008. Google Scholar

[8]

T. Bonald and J. Roberts, Performance modeling of elastic traffic in overload,, ACM Sigmetrics Performance Evaluation Review, 29 (2001), 342. doi: 10.1145/384268.378845. Google Scholar

[9]

O. J. Boxma and P. R. de Waal, Multiserver queues with impatient customers,, in, (1994), 743. Google Scholar

[10]

D. J. Daley, General customer impatience in the queue GI/G/1,, Journal of Applied Probability, 2 (1965), 186. Google Scholar

[11]

S. Economou and S. Kapodistria, Synchronized abandonments in a single server unreliable queue,, European Journal of Operational Research, 203 (2010), 143. doi: 10.1016/j.ejor.2009.07.014. Google Scholar

[12]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutorial, review, and research prospects,, Manufacturing and Service Operations Management, 5 (2003), 79. Google Scholar

[13]

E. R. Obert, Reneging phenomenon of single channel queues,, Mathematics of Operations Research, 4 (1979), 162. Google Scholar

[14]

C. Palm, Methods of judging the annoyance caused by congestion,, Tele., 4 (1953), 189. Google Scholar

[15]

N. Perel and U. Yechiali, Queues with slow servers and impatient customers,, European Journal of Operational Research, 201 (2010), 247. doi: 10.1016/j.ejor.2009.02.024. Google Scholar

[16]

Y. Sakuma, A. Inoie, K. Kawanishi and M. Miyazawa, Tail asymptotics for waiting time distribution of an M/M/$s$ queue with general impatient time,, Journal of Industrial and Management Optimization, 7 (2011), 593. Google Scholar

[17]

L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (M/M/1/WV),, Performance Evaluation, 50 (2002), 41. doi: 10.1016/S0166-5316(02)00057-3. Google Scholar

[18]

L. Takacs, A single-server queue with limited virtual waiting time,, Journal of Applied Probability, 11 (1974), 612. doi: 10.2307/3212710. Google Scholar

[19]

B. Van Houdt, R. B. Lenin and C. Blonia, Delay distribution of (im)patient customers in a discrete time D-MAP/PH/1 queue with age-dependent service times,, Queueing Systems, 45 (2003), 59. doi: 10.1023/A:1025695818046. Google Scholar

[20]

D. Wu and H. Takagi, M/G/1 queue with multiple working vacations,, Performance Evaluation, 63 (2006), 654. doi: 10.1016/j.peva.2005.05.005. Google Scholar

[21]

U. Yechiali, Queues with system disasters and impatient customers when system is down,, Queueing Systems, 56 (2007), 195. doi: 10.1007/s11134-007-9031-z. Google Scholar

[22]

D. Yue and W. Yue, Analysis of M/M/$c$/N queueing system with balking, reneging and synchronous vacations,, in, (2009), 165. Google Scholar

[23]

D. Yue and W. Yue, Block-partioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns,, Journal of Industrial and Management Optimization, 5 (2009), 417. Google Scholar

[24]

M. Zhang and Z. Hou, Performance analysis of MAP/G/1 queue with working vacations and vacation interruption,, Applied Mathematical Modelling, 35 (2011), 1551. doi: 10.1016/j.apm.2010.09.031. Google Scholar

show all references

References:
[1]

R. O. Al-Seedy, S. A. El-Shehawy, A. A. El-Sherbiny and S. I. Ammar, Transient solution of the M/M/c queue with balking and reneging,, Computers and Mathematics with Applications, 57 (2009), 1280. doi: 10.1016/j.camwa.2009.01.017. Google Scholar

[2]

E. Altman and U. Yechiali, Analysis of customers' impatience in queues with server vacations,, Queueing Systems, 52 (2006), 261. doi: 10.1007/s11134-006-6134-x. Google Scholar

[3]

E. Altman and U. Yechiali, Infinite-server queues with systems' additional task and impatient customers,, Probability in the Engineering and Informational Sciences, 22 (2008), 477. doi: 10.1017/S0269964808000296. Google Scholar

[4]

Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations,, Operations Research Letters, 33 (2005), 201. doi: 10.1016/j.orl.2004.05.006. Google Scholar

[5]

F. Baccelli, P. Boyer and G. Hebuterne, Single-server queues with impatient customers,, Advances in Applied Probability, 16 (1984), 887. doi: 10.2307/1427345. Google Scholar

[6]

A. D. Banik, U. C. Gupta and S. S. Pathak, On the GI/M/1/N queue with multiple vacation-analytic analysis and computation,, Applied Mathematical Modelling, 31 (2007), 1701. doi: 10.1016/j.apm.2006.05.010. Google Scholar

[7]

S. Benjaafar, J. Gayon and S. Tepe, Optimal control of a production-inventory system with customer impatience,, Operations Research Letters, 38 (2010), 267. doi: 10.1016/j.orl.2010.03.008. Google Scholar

[8]

T. Bonald and J. Roberts, Performance modeling of elastic traffic in overload,, ACM Sigmetrics Performance Evaluation Review, 29 (2001), 342. doi: 10.1145/384268.378845. Google Scholar

[9]

O. J. Boxma and P. R. de Waal, Multiserver queues with impatient customers,, in, (1994), 743. Google Scholar

[10]

D. J. Daley, General customer impatience in the queue GI/G/1,, Journal of Applied Probability, 2 (1965), 186. Google Scholar

[11]

S. Economou and S. Kapodistria, Synchronized abandonments in a single server unreliable queue,, European Journal of Operational Research, 203 (2010), 143. doi: 10.1016/j.ejor.2009.07.014. Google Scholar

[12]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutorial, review, and research prospects,, Manufacturing and Service Operations Management, 5 (2003), 79. Google Scholar

[13]

E. R. Obert, Reneging phenomenon of single channel queues,, Mathematics of Operations Research, 4 (1979), 162. Google Scholar

[14]

C. Palm, Methods of judging the annoyance caused by congestion,, Tele., 4 (1953), 189. Google Scholar

[15]

N. Perel and U. Yechiali, Queues with slow servers and impatient customers,, European Journal of Operational Research, 201 (2010), 247. doi: 10.1016/j.ejor.2009.02.024. Google Scholar

[16]

Y. Sakuma, A. Inoie, K. Kawanishi and M. Miyazawa, Tail asymptotics for waiting time distribution of an M/M/$s$ queue with general impatient time,, Journal of Industrial and Management Optimization, 7 (2011), 593. Google Scholar

[17]

L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (M/M/1/WV),, Performance Evaluation, 50 (2002), 41. doi: 10.1016/S0166-5316(02)00057-3. Google Scholar

[18]

L. Takacs, A single-server queue with limited virtual waiting time,, Journal of Applied Probability, 11 (1974), 612. doi: 10.2307/3212710. Google Scholar

[19]

B. Van Houdt, R. B. Lenin and C. Blonia, Delay distribution of (im)patient customers in a discrete time D-MAP/PH/1 queue with age-dependent service times,, Queueing Systems, 45 (2003), 59. doi: 10.1023/A:1025695818046. Google Scholar

[20]

D. Wu and H. Takagi, M/G/1 queue with multiple working vacations,, Performance Evaluation, 63 (2006), 654. doi: 10.1016/j.peva.2005.05.005. Google Scholar

[21]

U. Yechiali, Queues with system disasters and impatient customers when system is down,, Queueing Systems, 56 (2007), 195. doi: 10.1007/s11134-007-9031-z. Google Scholar

[22]

D. Yue and W. Yue, Analysis of M/M/$c$/N queueing system with balking, reneging and synchronous vacations,, in, (2009), 165. Google Scholar

[23]

D. Yue and W. Yue, Block-partioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns,, Journal of Industrial and Management Optimization, 5 (2009), 417. Google Scholar

[24]

M. Zhang and Z. Hou, Performance analysis of MAP/G/1 queue with working vacations and vacation interruption,, Applied Mathematical Modelling, 35 (2011), 1551. doi: 10.1016/j.apm.2010.09.031. Google Scholar

[1]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[2]

Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial & Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839

[3]

Zhanyou Ma, Wuyi Yue, Xiaoli Su. Performance analysis of a Geom/Geom/1 queueing system with variable input probability. Journal of Industrial & Management Optimization, 2011, 7 (3) : 641-653. doi: 10.3934/jimo.2011.7.641

[4]

Zhanyou Ma, Wenbo Wang, Linmin Hu. Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2018196

[5]

Noah H. Rhee, PaweŁ Góra, Majid Bani-Yaghoub. Predicting and estimating probability density functions of chaotic systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 297-319. doi: 10.3934/dcdsb.2017144

[6]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019106

[7]

Włodzimierz M. Tulczyjew, Paweł Urbański. Regularity of generating families of functions. Journal of Geometric Mechanics, 2010, 2 (2) : 199-221. doi: 10.3934/jgm.2010.2.199

[8]

Simone Vazzoler. A note on the normalization of generating functions. Journal of Geometric Mechanics, 2018, 10 (2) : 209-215. doi: 10.3934/jgm.2018008

[9]

Huiyan Xue, Antonella Zanna. Generating functions and volume preserving mappings. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1229-1249. doi: 10.3934/dcds.2014.34.1229

[10]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

[11]

Cheng-Dar Liou. Optimization analysis of the machine repair problem with multiple vacations and working breakdowns. Journal of Industrial & Management Optimization, 2015, 11 (1) : 83-104. doi: 10.3934/jimo.2015.11.83

[12]

Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial & Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1

[13]

Felipe García-Ramos, Brian Marcus. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 729-746. doi: 10.3934/dcds.2019030

[14]

Nir Avni, Benjamin Weiss. Generating product systems. Journal of Modern Dynamics, 2010, 4 (2) : 257-270. doi: 10.3934/jmd.2010.4.257

[15]

Dequan Yue, Wuyi Yue, Guoxi Zhao. Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states. Journal of Industrial & Management Optimization, 2016, 12 (2) : 653-666. doi: 10.3934/jimo.2016.12.653

[16]

Domingo Gómez-Pérez, László Mérai. Algebraic dependence in generating functions and expansion complexity. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020022

[17]

Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial & Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779

[18]

Sin-Man Choi, Ximin Huang, Wai-Ki Ching. Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment. Journal of Industrial & Management Optimization, 2012, 8 (2) : 299-323. doi: 10.3934/jimo.2012.8.299

[19]

Ana Paula S. Dias, Paul C. Matthews, Ana Rodrigues. Generating functions for Hopf bifurcation with $ S_n$-symmetry. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 823-842. doi: 10.3934/dcds.2009.25.823

[20]

Wai-Ki Ching, Tang Li, Sin-Man Choi, Issic K. C. Leung. A tandem queueing system with applications to pricing strategy. Journal of Industrial & Management Optimization, 2009, 5 (1) : 103-114. doi: 10.3934/jimo.2009.5.103

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]