2013, 9(3): 631-642. doi: 10.3934/jimo.2013.9.631

Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements

1. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, Guangdong, China

2. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631

Received  April 2012 Revised  March 2013 Published  April 2013

In this paper, we investigate the superconvergence property of a quadratic elliptic control problem with pointwise control constraints. The state and the co-state variables are approximated by the Raviart-Thomas mixed finite element of order $k=1$ and the control variable is discretized by piecewise linear but discontinuous functions. Approximations of the optimal solution of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that these approximations have convergence order $h^{2}$.
Citation: Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631
References:
[1]

N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem,, Comput. Optim. Appl., 23 (2002), 201. doi: 10.1023/A:1020576801966.

[2]

R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept,, SIAM J. Control Optim., 39 (2000), 113. doi: 10.1137/S0363012999351097.

[3]

F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods,", Springer-Verlag, (1991). doi: 10.1007/978-1-4612-3172-1.

[4]

E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems,, in, (2003), 89.

[5]

Y. Chen, Superconvergence of mixed finite element methods for optimal control problems,, Math. Comp., 77 (2008), 1269. doi: 10.1090/S0025-5718-08-02104-2.

[6]

Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements,, Inter. J. Numer. Meths. Eng., 75 (2008), 881. doi: 10.1002/nme.2272.

[7]

Y. Chen, Y. Huang, W. B. Liu and N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems,, J. Sci. Comput., 42 (2009), 382. doi: 10.1007/s10915-009-9327-8.

[8]

Y. Chen and Y. Q. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations,, J. Sci. Comput., 39 (2009), 206. doi: 10.1007/s10915-008-9258-9.

[9]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems,", North-Holland, (1978).

[10]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,", Pitman, (1985).

[11]

J. Douglas and J. E. Roberts, Global estimates for mixed finite element methods for second order elliptic equations,, Math. Comp., 44 (1985), 39. doi: 10.2307/2007791.

[12]

F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates,, J. Math. Anal. Appl., 44 (1973), 28.

[13]

T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation,, RAIRO. Anal. Numer., 13 (1979), 313.

[14]

R. Li, W. B. Liu, H. P. Ma and T. Tang, Adaptive finite element approximation of elliptic optimal control,, SIAM J. Control Optim., 41 (2002), 1321. doi: 10.1137/S0363012901389342.

[15]

R. Li and W., Liu,, , ().

[16]

J. L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations,", Springer-Verlag, (1971).

[17]

W. B. Liu and N. N. Yan, A posteriori error analysis for convex distributed optimal control problems,, Adv. Comp. Math., 15 (2001), 285. doi: 10.1023/A:1014239012739.

[18]

C. Meyer and A. Rösch, Superconvergence properties of optimal control problems,, SIAM J. Control Optim., 43 (2004), 970. doi: 10.1137/S0363012903431608.

[19]

P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems,, in, (1977), 292.

[20]

A. Rösch and R. Simon, Linear and discontinuous approximations for optimal control problems,, Numer. Funct. Anal. Optim., 26 (2005), 427. doi: 10.1081/NFA-200067309.

show all references

References:
[1]

N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem,, Comput. Optim. Appl., 23 (2002), 201. doi: 10.1023/A:1020576801966.

[2]

R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept,, SIAM J. Control Optim., 39 (2000), 113. doi: 10.1137/S0363012999351097.

[3]

F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods,", Springer-Verlag, (1991). doi: 10.1007/978-1-4612-3172-1.

[4]

E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems,, in, (2003), 89.

[5]

Y. Chen, Superconvergence of mixed finite element methods for optimal control problems,, Math. Comp., 77 (2008), 1269. doi: 10.1090/S0025-5718-08-02104-2.

[6]

Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements,, Inter. J. Numer. Meths. Eng., 75 (2008), 881. doi: 10.1002/nme.2272.

[7]

Y. Chen, Y. Huang, W. B. Liu and N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems,, J. Sci. Comput., 42 (2009), 382. doi: 10.1007/s10915-009-9327-8.

[8]

Y. Chen and Y. Q. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations,, J. Sci. Comput., 39 (2009), 206. doi: 10.1007/s10915-008-9258-9.

[9]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems,", North-Holland, (1978).

[10]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,", Pitman, (1985).

[11]

J. Douglas and J. E. Roberts, Global estimates for mixed finite element methods for second order elliptic equations,, Math. Comp., 44 (1985), 39. doi: 10.2307/2007791.

[12]

F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates,, J. Math. Anal. Appl., 44 (1973), 28.

[13]

T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation,, RAIRO. Anal. Numer., 13 (1979), 313.

[14]

R. Li, W. B. Liu, H. P. Ma and T. Tang, Adaptive finite element approximation of elliptic optimal control,, SIAM J. Control Optim., 41 (2002), 1321. doi: 10.1137/S0363012901389342.

[15]

R. Li and W., Liu,, , ().

[16]

J. L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations,", Springer-Verlag, (1971).

[17]

W. B. Liu and N. N. Yan, A posteriori error analysis for convex distributed optimal control problems,, Adv. Comp. Math., 15 (2001), 285. doi: 10.1023/A:1014239012739.

[18]

C. Meyer and A. Rösch, Superconvergence properties of optimal control problems,, SIAM J. Control Optim., 43 (2004), 970. doi: 10.1137/S0363012903431608.

[19]

P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems,, in, (1977), 292.

[20]

A. Rösch and R. Simon, Linear and discontinuous approximations for optimal control problems,, Numer. Funct. Anal. Optim., 26 (2005), 427. doi: 10.1081/NFA-200067309.

[1]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[2]

Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control & Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183

[3]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[4]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[5]

Eduardo Casas, Mariano Mateos, Arnd Rösch. Finite element approximation of sparse parabolic control problems. Mathematical Control & Related Fields, 2017, 7 (3) : 393-417. doi: 10.3934/mcrf.2017014

[6]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[7]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[8]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[9]

Qun Lin, Hehu Xie. Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods. Inverse Problems & Imaging, 2013, 7 (3) : 795-811. doi: 10.3934/ipi.2013.7.795

[10]

Jinghong Liu, Yinsuo Jia. Gradient superconvergence post-processing of the tensor-product quadratic pentahedral finite element. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 495-504. doi: 10.3934/dcdsb.2015.20.495

[11]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[12]

G. Bonanno, Salvatore A. Marano. Highly discontinuous elliptic problems. Conference Publications, 1998, 1998 (Special) : 118-123. doi: 10.3934/proc.1998.1998.118

[13]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[14]

Assyr Abdulle, Yun Bai, Gilles Vilmart. Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 91-118. doi: 10.3934/dcdss.2015.8.91

[15]

Huan-Zhen Chen, Zhao-Jie Zhou, Hong Wang, Hong-Ying Man. An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 325-341. doi: 10.3934/dcdsb.2011.15.325

[16]

Urszula Ledzewicz, Stanislaw Walczak. Optimal control of systems governed by some elliptic equations . Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 279-290. doi: 10.3934/dcds.1999.5.279

[17]

Georg Vossen, Torsten Hermanns. On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints. Journal of Industrial & Management Optimization, 2014, 10 (2) : 503-519. doi: 10.3934/jimo.2014.10.503

[18]

Andrei V. Dmitruk, Alexander M. Kaganovich. Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 523-545. doi: 10.3934/dcds.2011.29.523

[19]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[20]

Antoine Benoit. Finite speed of propagation for mixed problems in the $WR$ class. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2351-2358. doi: 10.3934/cpaa.2014.13.2351

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]