January  2014, 10(1): 1-19. doi: 10.3934/jimo.2014.10.1

A cross-layer relay selection scheme of a wireless network with multiple relays under Rayleigh fading

1. 

Department of Mathematical Sciences and Telecommunication Engineering Program, Korea Advanced Institute of Science and Technology, Daejeon, South Korea

Received  September 2012 Revised  July 2013 Published  October 2013

In this paper, we consider a decode-and-forward wireless relay network consisting of a source node, a destination node and multiple relay nodes under Rayleigh fading. Cooperative diversity of the network is achieved by using an opportunistic relay selection. To maximize the benefit of cooperative diversity, we propose a novel cross-layer single relay selection scheme, called the First-Channel-and-Second-Buffer (FCSB) scheme, that considers the performances of both the physical and data link layers. To examine the performance of the proposed FCSB scheme, we develop an analytical model that describes the queueing process of the source node, and derive the average packet delay of the FCSB scheme from our analytical model. Our analytical model is verified through simulation. We discuss how to optimally design the proposed FCSB scheme to minimize the average packet delay. We also show that the optimized FCSB scheme outperforms other relay selection schemes from the viewpoint of average packet delay.
Citation: Hong Il Cho, Myungwoo Lee, Ganguk Hwang. A cross-layer relay selection scheme of a wireless network with multiple relays under Rayleigh fading. Journal of Industrial & Management Optimization, 2014, 10 (1) : 1-19. doi: 10.3934/jimo.2014.10.1
References:
[1]

A. Bletsas, H. Shin and M. Z. Win, Cooperative communication with outage-optimal opportunistic relaying,, IEEE Trans. Wireless Commun., 6 (2007), 3450. doi: 10.1109/TWC.2007.06020050.

[2]

G. Casella, R. L. Berger, Statistical inference,, Biometrics, 49 (1993), 320. doi: 10.2307/2532634.

[3]

W. Chen, L. Dai, K. B. Letaief and Z. Cao, A unified cross-layer framework for resource allocation in cooperative networks,, IEEE Trans. Wireless Commun., 7 (2008), 3000.

[4]

H. I. Cho and G. U. Hwang, Optimal design and analysis of a two-hop relay network under rayleigh fading for packet delay minimization,, Journal of Industrial and Management Optimization, 7 (2011), 607. doi: 10.3934/jimo.2011.7.607.

[5]

T. M. Cover and A. E. Gamal, Capacity theorems for the relay channel,, IEEE Trans. Inform. Theory, 25 (1979), 572. doi: 10.1109/TIT.1979.1056084.

[6]

Y. Ge, S. Wen, Y. Ang and Y. Liang, Optimal relay selection in IEEE 802.16j multihop relay vehicular networks,, IEEE Trans. on Veh. Tech., 59 (2010).

[7]

H. Heffes and D. M. Lucantoni, A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance,, IEEE J. on Sel. Areas in Commun., 4 (1986), 856. doi: 10.1109/JSAC.1986.1146393.

[8]

Y. Jing and H. Jafarkhani, Single and multiple relay selection schemes and their diversity orders,, IEEE Trans. Wireless Commun., 8 (2009), 1414.

[9]

J. N. Laneman, D. N. C. Tse and G. W. Wornell, Cooperative diversity in wireless networks: Efficient protocols and outage behavior,, IEEE Trans. Inform. Theory, 50 (2004), 3062. doi: 10.1109/TIT.2004.838089.

[10]

Q. Liu, S. Zhou and G. B. Giannakis, Queueing with adaptive modulation and coding over wireless links: Cross-layer analysis and design,, IEEE Trans. Commun., 4 (2005).

[11]

R. Madan, N. B. Mehta, A. F. Molisch and J. Zhang, Energy-efficient cooperative relaying over fading channels with simple relay selection,, IEEE Trans. Wireless Commun., 7 (2008), 3013. doi: 10.1109/TWC.2008.06090.

[12]

M. F. Neuts, "Structured Stochastic Matrices of M/G/1 Type and Their Application,", Probability: Pure and Applied, (1989).

[13]

T. S. Rappaport, "Wireless Communications,", Prentice Hall, (2002).

[14]

A. Sendonaris, E. Erkip and B. Aazhang, User cooperation diversity - Part I : System description,, IEEE Trans. Commu., 51 (2003), 1927.

[15]

B. Wang, Z. Han and K. J. Ray Liu, Distributed relay selection and power control for multiuser cooperative communication networks using Stackelberg game,, IEEE Trans. Mobile Computing, 8 (2009).

[16]

R. Wang, V. K. N. Lau and H. Huang, Delay optimal power control and relay selection for two-hop cooperative OFDM systems via distributed stochastic learning,, IEEE International Symposium on Information Theory Proceedings (ISIT), (2010), 1843. doi: 10.1109/ISIT.2010.5513424.

[17]

Y. Wei, F. Richard Yu and M. Song, Distributed optimal relay selection in wireless cooperative networks with finite-state Markov channels,, IEEE Trans. on Veh. Tech., 59 (2010).

[18]

Y. Zhang, Y. Xu and Y. Cai, Relay selection utilizing power control for decode-and-forward wireless relay networks,, 2nd International Conference on Signal Processing and Communication Systems, (2008). doi: 10.1109/ICSPCS.2008.4813770.

show all references

References:
[1]

A. Bletsas, H. Shin and M. Z. Win, Cooperative communication with outage-optimal opportunistic relaying,, IEEE Trans. Wireless Commun., 6 (2007), 3450. doi: 10.1109/TWC.2007.06020050.

[2]

G. Casella, R. L. Berger, Statistical inference,, Biometrics, 49 (1993), 320. doi: 10.2307/2532634.

[3]

W. Chen, L. Dai, K. B. Letaief and Z. Cao, A unified cross-layer framework for resource allocation in cooperative networks,, IEEE Trans. Wireless Commun., 7 (2008), 3000.

[4]

H. I. Cho and G. U. Hwang, Optimal design and analysis of a two-hop relay network under rayleigh fading for packet delay minimization,, Journal of Industrial and Management Optimization, 7 (2011), 607. doi: 10.3934/jimo.2011.7.607.

[5]

T. M. Cover and A. E. Gamal, Capacity theorems for the relay channel,, IEEE Trans. Inform. Theory, 25 (1979), 572. doi: 10.1109/TIT.1979.1056084.

[6]

Y. Ge, S. Wen, Y. Ang and Y. Liang, Optimal relay selection in IEEE 802.16j multihop relay vehicular networks,, IEEE Trans. on Veh. Tech., 59 (2010).

[7]

H. Heffes and D. M. Lucantoni, A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance,, IEEE J. on Sel. Areas in Commun., 4 (1986), 856. doi: 10.1109/JSAC.1986.1146393.

[8]

Y. Jing and H. Jafarkhani, Single and multiple relay selection schemes and their diversity orders,, IEEE Trans. Wireless Commun., 8 (2009), 1414.

[9]

J. N. Laneman, D. N. C. Tse and G. W. Wornell, Cooperative diversity in wireless networks: Efficient protocols and outage behavior,, IEEE Trans. Inform. Theory, 50 (2004), 3062. doi: 10.1109/TIT.2004.838089.

[10]

Q. Liu, S. Zhou and G. B. Giannakis, Queueing with adaptive modulation and coding over wireless links: Cross-layer analysis and design,, IEEE Trans. Commun., 4 (2005).

[11]

R. Madan, N. B. Mehta, A. F. Molisch and J. Zhang, Energy-efficient cooperative relaying over fading channels with simple relay selection,, IEEE Trans. Wireless Commun., 7 (2008), 3013. doi: 10.1109/TWC.2008.06090.

[12]

M. F. Neuts, "Structured Stochastic Matrices of M/G/1 Type and Their Application,", Probability: Pure and Applied, (1989).

[13]

T. S. Rappaport, "Wireless Communications,", Prentice Hall, (2002).

[14]

A. Sendonaris, E. Erkip and B. Aazhang, User cooperation diversity - Part I : System description,, IEEE Trans. Commu., 51 (2003), 1927.

[15]

B. Wang, Z. Han and K. J. Ray Liu, Distributed relay selection and power control for multiuser cooperative communication networks using Stackelberg game,, IEEE Trans. Mobile Computing, 8 (2009).

[16]

R. Wang, V. K. N. Lau and H. Huang, Delay optimal power control and relay selection for two-hop cooperative OFDM systems via distributed stochastic learning,, IEEE International Symposium on Information Theory Proceedings (ISIT), (2010), 1843. doi: 10.1109/ISIT.2010.5513424.

[17]

Y. Wei, F. Richard Yu and M. Song, Distributed optimal relay selection in wireless cooperative networks with finite-state Markov channels,, IEEE Trans. on Veh. Tech., 59 (2010).

[18]

Y. Zhang, Y. Xu and Y. Cai, Relay selection utilizing power control for decode-and-forward wireless relay networks,, 2nd International Conference on Signal Processing and Communication Systems, (2008). doi: 10.1109/ICSPCS.2008.4813770.

[1]

Hong Il Cho, Gang Uk Hwang. Optimal design and analysis of a two-hop relay network under Rayleigh fading for packet delay minimization. Journal of Industrial & Management Optimization, 2011, 7 (3) : 607-622. doi: 10.3934/jimo.2011.7.607

[2]

Xiaoshuang Xing, Gaofei Sun, Yong Jin, Wenyi Tang, Xiuzhen Cheng. Relay selection based on social relationship prediction and information leakage reduction for mobile social networks. Mathematical Foundations of Computing, 2018, 1 (4) : 369-382. doi: 10.3934/mfc.2018018

[3]

Alain Jacquemard, Weber Flávio Pereira. On periodic orbits of polynomial relay systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 331-347. doi: 10.3934/dcds.2007.17.331

[4]

Jae Deok Kim, Ganguk Hwang. Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing. Journal of Industrial & Management Optimization, 2015, 11 (3) : 807-828. doi: 10.3934/jimo.2015.11.807

[5]

Hyeon Je Cho, Ganguk Hwang. Optimal design for dynamic spectrum access in cognitive radio networks under Rayleigh fading. Journal of Industrial & Management Optimization, 2012, 8 (4) : 821-840. doi: 10.3934/jimo.2012.8.821

[6]

Hung-Wen Kuo. The initial layer for Rayleigh problem. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 137-170. doi: 10.3934/dcdsb.2011.15.137

[7]

Ruwu Xiao, Geng Li, Yuping Zhao. On the design of full duplex wireless system with chaotic sequences. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 783-793. doi: 10.3934/dcdss.2019052

[8]

Keisuke Minami, Takahiro Matsuda, Tetsuya Takine, Taku Noguchi. Asynchronous multiple source network coding for wireless broadcasting. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 577-592. doi: 10.3934/naco.2011.1.577

[9]

Sebastià Galmés. Markovian characterization of node lifetime in a time-driven wireless sensor network. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 763-780. doi: 10.3934/naco.2011.1.763

[10]

Li Gang. An optimization detection algorithm for complex intrusion interference signal in mobile wireless network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1371-1384. doi: 10.3934/dcdss.2019094

[11]

Aiwan Fan, Qiming Wang, Joyati Debnath. A high precision data encryption algorithm in wireless network mobile communication. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1327-1340. doi: 10.3934/dcdss.2019091

[12]

Gaidi Li, Jiating Shao, Dachuan Xu, Wen-Qing Xu. The warehouse-retailer network design game. Journal of Industrial & Management Optimization, 2015, 11 (1) : 291-305. doi: 10.3934/jimo.2015.11.291

[13]

Roberta Sirovich, Laura Sacerdote, Alessandro E. P. Villa. Cooperative behavior in a jump diffusion model for a simple network of spiking neurons. Mathematical Biosciences & Engineering, 2014, 11 (2) : 385-401. doi: 10.3934/mbe.2014.11.385

[14]

Ashkan Mohsenzadeh Ledari, Alireza Arshadi Khamseh, Mohammad Mohammadi. A three echelon revenue oriented green supply chain network design. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 157-168. doi: 10.3934/naco.2018009

[15]

Robert Ebihart Msigwa, Yue Lu, Xiantao Xiao, Liwei Zhang. A perturbation-based approach for continuous network design problem with emissions. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 135-149. doi: 10.3934/naco.2015.5.135

[16]

Michelle L.F. Cheong, Rohit Bhatnagar, Stephen C. Graves. Logistics network design with supplier consolidation hubs and multiple shipment options. Journal of Industrial & Management Optimization, 2007, 3 (1) : 51-69. doi: 10.3934/jimo.2007.3.51

[17]

Sangkyu Baek, Bong Dae Choi. Performance analysis of power save mode in IEEE 802.11 infrastructure wireless local area network. Journal of Industrial & Management Optimization, 2009, 5 (3) : 481-492. doi: 10.3934/jimo.2009.5.481

[18]

Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 887-900. doi: 10.3934/dcdss.2019059

[19]

Jae Man Park, Gang Uk Hwang, Boo Geum Jung. Design and analysis of an adaptive guard channel based CAC scheme in a 3G-WLAN integrated network. Journal of Industrial & Management Optimization, 2010, 6 (3) : 621-639. doi: 10.3934/jimo.2010.6.621

[20]

Hong Man, Yibin Yu, Yuebang He, Hui Huang. Design of one type of linear network prediction controller for multi-agent system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 727-734. doi: 10.3934/dcdss.2019047

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]