
Previous Article
A dual tandem queueing system with GI service time at the first queue
 JIMO Home
 This Issue

Next Article
Varianceoptimal hedging for target volatility options
A continuoustime queueing model with class clustering and global FCFS service discipline
1.  Department of Telecommunications and Information Processing, Ghent University  UGent, SintPietersnieuwstraat 41, 9000 Ghent, Belgium, Belgium, Belgium 
2.  Department of Telecommunications and Information Processing, Ghent University, StPietersnieuwstraat 41, 9000 Gent 
References:
[1] 
I. Adan, T. de Kok and J. Resing, A multiserver queueing model with locking,, EJOR, 116 (2000), 16. 
[2] 
I. J. B. F. Adan, J. Wessels and W. H. M. Zijm, A compensation approach for twodimensional markov processes,, Advances in Applied Probability, 25 (1993), 783. doi: 10.2307/1427792. 
[3] 
P. Beekhuizen and J. Resing, Performance analysis of small nonuniform packet switches,, Performance Evaluation, 66 (2009), 640. 
[4] 
Z. Berdowski, F. van den BroekSerlé, J. Jetten, Y. Kawabata, J. Schoemaker and R. Versteegh, Survey on standard weights of passengers and baggage,, Survey. EASA 2008.C.06/30800/R20090095/30800000/FBR/RLO, (2009). 
[5] 
D. Bertsimas, An exact fcfs waiting time analysis for a general class of G/G/s queueing systems,, Queueing Systems Theory Appl., 3 (1988), 305. doi: 10.1007/BF01157853. 
[6] 
D. Bertsimas, An analytic approach to a general class of G/G/s queueing systems,, Operations Research, 38 (1990), 139. doi: 10.1287/opre.38.1.139. 
[7] 
P. P. Bocharov and C. D'Apice, "Queueing Theory,", Walter de Gruyter, (2004). 
[8] 
W. Grassmann, Real eigenvalues of certain tridiagonal matrix polynomials, with queueing applications,, Linear Algebra and its Applications, 342 (2002), 93. doi: 10.1016/S00243795(01)004621. 
[9] 
M. Karol, M. Hluchyj and S. Morgan, Input versus output queueing on a spacedivision packet switch,, IEEE Transactions on Communications, 35 (1987), 1347. 
[10] 
K. Laevens, A processorsharing model for inputbuffered ATMswitches in a correlated traffic environment,, Microprocessors and Microsystems, 22 (1999), 589. 
[11] 
S. Liew, Performance of various inputbuffered and outputbuffered ATM switch design principles under bursty traffic: Simulation study,, IEEE Transactions on Communications, 42 (1994), 1371. 
[12] 
W. Mélange, H. Bruneel, B. Steyaert and J. Walraevens, A twoclass continuoustime queueing model with dedicated servers and global fcfs service discipline,, In, 6751 (2011), 14. 
[13] 
M. F. Neuts, "MatrixGeometric Solutions in Stochastic Models: An Algorithmic Approach,", Corrected reprint of the 1981 original. Dover Publications, (1981). 
[14] 
D. Ngoduy, Derivation of continuum traffic model for weaving sections on freeways,, Transportmetrica, 2 (2006), 199. 
[15] 
R. Nishi, H. Miki, A. Tomoeda and K. Nishinari, Achievement of alternative configurations of vehicles on multiple lanes,, Physical Review E, 79 (2009). 
[16] 
A. Stolyar, MaxWeight scheduling in a generalized switch: State space collapse and workload minimization in heavy traffic,, Annals of Applied Probability, 14 (2004), 1. doi: 10.1214/aoap/1075828046. 
[17] 
T. Van Woensel and N. Vandaele, Empirical validation of a queueing approach to uninterrupted traffic flows,, 4OR, 4 (2006), 59. 
[18] 
T. Van Woensel and N. Vandaele, Modeling traffic flows with queueing models: A review,, AsiaPacific Journal of Operational Research, 24 (2007), 435. 
show all references
References:
[1] 
I. Adan, T. de Kok and J. Resing, A multiserver queueing model with locking,, EJOR, 116 (2000), 16. 
[2] 
I. J. B. F. Adan, J. Wessels and W. H. M. Zijm, A compensation approach for twodimensional markov processes,, Advances in Applied Probability, 25 (1993), 783. doi: 10.2307/1427792. 
[3] 
P. Beekhuizen and J. Resing, Performance analysis of small nonuniform packet switches,, Performance Evaluation, 66 (2009), 640. 
[4] 
Z. Berdowski, F. van den BroekSerlé, J. Jetten, Y. Kawabata, J. Schoemaker and R. Versteegh, Survey on standard weights of passengers and baggage,, Survey. EASA 2008.C.06/30800/R20090095/30800000/FBR/RLO, (2009). 
[5] 
D. Bertsimas, An exact fcfs waiting time analysis for a general class of G/G/s queueing systems,, Queueing Systems Theory Appl., 3 (1988), 305. doi: 10.1007/BF01157853. 
[6] 
D. Bertsimas, An analytic approach to a general class of G/G/s queueing systems,, Operations Research, 38 (1990), 139. doi: 10.1287/opre.38.1.139. 
[7] 
P. P. Bocharov and C. D'Apice, "Queueing Theory,", Walter de Gruyter, (2004). 
[8] 
W. Grassmann, Real eigenvalues of certain tridiagonal matrix polynomials, with queueing applications,, Linear Algebra and its Applications, 342 (2002), 93. doi: 10.1016/S00243795(01)004621. 
[9] 
M. Karol, M. Hluchyj and S. Morgan, Input versus output queueing on a spacedivision packet switch,, IEEE Transactions on Communications, 35 (1987), 1347. 
[10] 
K. Laevens, A processorsharing model for inputbuffered ATMswitches in a correlated traffic environment,, Microprocessors and Microsystems, 22 (1999), 589. 
[11] 
S. Liew, Performance of various inputbuffered and outputbuffered ATM switch design principles under bursty traffic: Simulation study,, IEEE Transactions on Communications, 42 (1994), 1371. 
[12] 
W. Mélange, H. Bruneel, B. Steyaert and J. Walraevens, A twoclass continuoustime queueing model with dedicated servers and global fcfs service discipline,, In, 6751 (2011), 14. 
[13] 
M. F. Neuts, "MatrixGeometric Solutions in Stochastic Models: An Algorithmic Approach,", Corrected reprint of the 1981 original. Dover Publications, (1981). 
[14] 
D. Ngoduy, Derivation of continuum traffic model for weaving sections on freeways,, Transportmetrica, 2 (2006), 199. 
[15] 
R. Nishi, H. Miki, A. Tomoeda and K. Nishinari, Achievement of alternative configurations of vehicles on multiple lanes,, Physical Review E, 79 (2009). 
[16] 
A. Stolyar, MaxWeight scheduling in a generalized switch: State space collapse and workload minimization in heavy traffic,, Annals of Applied Probability, 14 (2004), 1. doi: 10.1214/aoap/1075828046. 
[17] 
T. Van Woensel and N. Vandaele, Empirical validation of a queueing approach to uninterrupted traffic flows,, 4OR, 4 (2006), 59. 
[18] 
T. Van Woensel and N. Vandaele, Modeling traffic flows with queueing models: A review,, AsiaPacific Journal of Operational Research, 24 (2007), 435. 
[1] 
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195215. doi: 10.3934/mcrf.2012.2.195 
[2] 
Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptiveresume priority queue. Journal of Industrial & Management Optimization, 2017, 13 (4) : 19451973. doi: 10.3934/jimo.2017026 
[3] 
Wei Feng, Xin Lu. Global periodicity in a class of reactiondiffusion systems with time delays. Discrete & Continuous Dynamical Systems  B, 2003, 3 (1) : 6978. doi: 10.3934/dcdsb.2003.3.69 
[4] 
Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete & Continuous Dynamical Systems  A, 2013, 33 (10) : 46274646. doi: 10.3934/dcds.2013.33.4627 
[5] 
Nan Chen, Cheng Wang, Steven Wise. Globalintime Gevrey regularity solution for a class of bistable gradient flows. Discrete & Continuous Dynamical Systems  B, 2016, 21 (6) : 16891711. doi: 10.3934/dcdsb.2016018 
[6] 
Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial & Management Optimization, 2014, 10 (1) : 167192. doi: 10.3934/jimo.2014.10.167 
[7] 
Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Framebound priority scheduling in discretetime queueing systems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 767788. doi: 10.3934/jimo.2011.7.767 
[8] 
Yoshiaki Kawase, Shoji Kasahara. Priority queueing analysis of transactionconfirmation time for Bitcoin. Journal of Industrial & Management Optimization, 2017, 13 (5) : 122. doi: 10.3934/jimo.2018193 
[9] 
Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187213. doi: 10.3934/krm.2011.4.187 
[10] 
Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems  A, 2005, 13 (2) : 469490. doi: 10.3934/dcds.2005.13.469 
[11] 
WaiKi Ching, SinMan Choi, Min Huang. Optimal service capacity in a multipleserver queueing system: A game theory approach. Journal of Industrial & Management Optimization, 2010, 6 (1) : 73102. doi: 10.3934/jimo.2010.6.73 
[12] 
Tomáš Gedeon. Attractors in continuous –time switching networks. Communications on Pure & Applied Analysis, 2003, 2 (2) : 187209. doi: 10.3934/cpaa.2003.2.187 
[13] 
Wei Feng, Xin Lu. Global stability in a class of reactiondiffusion systems with timevarying delays. Conference Publications, 1998, 1998 (Special) : 253261. doi: 10.3934/proc.1998.1998.253 
[14] 
Vladimir V. Chepyzhov, Monica Conti, Vittorino Pata. A minimal approach to the theory of global attractors. Discrete & Continuous Dynamical Systems  A, 2012, 32 (6) : 20792088. doi: 10.3934/dcds.2012.32.2079 
[15] 
Joon Kwon, Panayotis Mertikopoulos. A continuoustime approach to online optimization. Journal of Dynamics & Games, 2017, 4 (2) : 125148. doi: 10.3934/jdg.2017008 
[16] 
Alain Bensoussan, Sonny Skaaning. Base stock list price policy in continuous time. Discrete & Continuous Dynamical Systems  B, 2017, 22 (1) : 128. doi: 10.3934/dcdsb.2017001 
[17] 
Simone Göttlich, Stephan Martin, Thorsten Sickenberger. Timecontinuous production networks with random breakdowns. Networks & Heterogeneous Media, 2011, 6 (4) : 695714. doi: 10.3934/nhm.2011.6.695 
[18] 
Hanqing Jin, Xun Yu Zhou. Continuoustime portfolio selection under ambiguity. Mathematical Control & Related Fields, 2015, 5 (3) : 475488. doi: 10.3934/mcrf.2015.5.475 
[19] 
Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems  A, 2016, 36 (1) : 6395. doi: 10.3934/dcds.2016.36.63 
[20] 
S. Mohamad, K. Gopalsamy. Neuronal dynamics in time varying enviroments: Continuous and discrete time models. Discrete & Continuous Dynamical Systems  A, 2000, 6 (4) : 841860. doi: 10.3934/dcds.2000.6.841 
2017 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]