January  2014, 10(1): 311-336. doi: 10.3934/jimo.2014.10.311

Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation

1. 

Universität der Bundeswehr München, Institut für Mathematik und Rechneranwendung, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

2. 

Elektrobit Automotive GmbH, Am Wolfsmantel 46, 91058 Erlangen, Germany

Received  October 2012 Revised  July 2013 Published  October 2013

We study convergence properties of Euler discretization of optimal control problems with ordinary differential equations and mixed control-state constraints. Under suitable consistency and stability assumptions a convergence rate of order $1/p$ of the discretized control to the continuous control is established in the $L^p$-norm. Throughout it is assumed that the optimal control is of bounded variation. The convergence proof exploits the reformulation of first order necessary optimality conditions as nonsmooth equations.
Citation: Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311
References:
[1]

W. Alt, Discretization and mesh-independence of Newton's method for generalized equations,, in, 195 (1997), 1.   Google Scholar

[2]

W. Alt, Mesh-independence of the Lagrange-Newton method for nonlinear optimal control problems and their discretizations,, Optimization with data perturbations, 101 (2001), 101.  doi: 10.1023/A:1010912305365.  Google Scholar

[3]

W. Alt, R. Baier, M. Gerdts and F. Lempio, Approximation of linear control problems with bang-bang solutions,, Optimization, 62 (2013), 9.  doi: 10.1080/02331934.2011.568619.  Google Scholar

[4]

W. Alt, R. Baier, M. Gerdts and F. Lempio, Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions,, Numerical Algebra, 2 (2012), 547.  doi: 10.3934/naco.2012.2.547.  Google Scholar

[5]

N. Banihashemi and C. Y. Kaya, Inexact restoration for Euler discretization of box-constrained optimal control problems,, Journal of Optimization Theory and Applications, 156 (2013), 726.  doi: 10.1007/s10957-012-0140-4.  Google Scholar

[6]

C. Büskens, M. Gerdts, T. Nikolayzik, P. Kalmbach, M. Kunkel and D. Wassel, Homepage of the WORHP solver,, , (2010).   Google Scholar

[7]

B. Chen, X. Chen and C. Kanzow, A penalized Fischer-Burmeister NCP-function,, Mathematical Programming, 88 (2000), 211.  doi: 10.1007/PL00011375.  Google Scholar

[8]

F. H. Clarke, "Optimization and Nonsmooth Analysis,'', Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).   Google Scholar

[9]

A. L. Dontchev, W. W. Hager and K. Malanowski, Error bounds for Euler approximation of a state and control constrained optimal control problem,, Numerical Functional Analysis and Optimization, 21 (2000), 653.  doi: 10.1080/01630560008816979.  Google Scholar

[10]

A. L. Dontchev, W. W. Hager and V. M. Veliov, Second-order runge-kutta approximations in control constrained optimal control,, SIAM Journal on Numerical Analysis, 38 (2000), 202.  doi: 10.1137/S0036142999351765.  Google Scholar

[11]

I. S. Duff, MA57 - A code for the solution of sparse symmetric definite and indefinite systems,, ACM Transactions on Mathematical Software, 30 (2004), 118.  doi: 10.1145/992200.992202.  Google Scholar

[12]

C. Geiger and C. Kanzow, "Theorie und Numerik Restringierter Optimierungsaufgaben,'', Springer, (2002).  doi: 10.1007/978-3-642-56004-0.  Google Scholar

[13]

M. Gerdts, Global convergence of a nonsmooth Newton method for control-state constrained optimal control problems,, SIAM Journal on Optimization, 19 (2008), 326.  doi: 10.1137/060657546.  Google Scholar

[14]

M. Gerdts and B. Hüpping, Virtual control regularization of state constrained linear quadratic optimal control problems.,, Comput. Optim. Appl., 51 (2012), 867.  doi: 10.1007/s10589-010-9353-3.  Google Scholar

[15]

W. W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint system,, Numerische Mathematik, 87 (2000), 247.  doi: 10.1007/s002110000178.  Google Scholar

[16]

H. Heuser, "Funktionalanalysis: Theorie und Anwendung,'', B. G. Teubner, (2006).   Google Scholar

[17]

M. Josephy, Composing functions of bounded variation,, Proceedings of the American Mathematical Society, 83 (1981), 354.  doi: 10.1090/S0002-9939-1981-0624930-9.  Google Scholar

[18]

M. Kunkel, "Nonsmooth Newton Methods and Convergence of Discretized Optimal Control Problems Subject to DAEs,", PhD thesis, (2012), 706.   Google Scholar

[19]

F. Lempio, Numerische mathematik II - methoden der analysis,, Bayreuther Mathematische Schriften, 55 (1998).   Google Scholar

[20]

L. A. Ljusternik and W. I. Sobolew, "Elemente Der Funktionalanalysis,'', Fünfte Auflage. Übersetzung der zweiten russischen Auflage von Klaus Fiedler und herausgegeben von Konrad Gröger. Mathematische Lehrbücher und Monographien, (1976).   Google Scholar

[21]

K. Malanowski, On normality of Lagrange multipliers for state constrained optimal control problems,, Optimization, 52 (2003), 75.  doi: 10.1080/0233193021000058940.  Google Scholar

[22]

K. Malanowski, Ch. Büskens and H. Maurer, Convergence of approximations to nonlinear optimal control problems,, in, (1998), 253.   Google Scholar

[23]

M. McAsey, L. Mou and W. Han, Convergence of the forward-backward sweep method in optimal control,, Computational Optimization and Applications, 53 (2012), 207.  doi: 10.1007/s10589-011-9454-7.  Google Scholar

[24]

I. P. Natanson, "Theorie der Funktionen Einer Reellen Veränderlichen,'', Verlag Harri Deutsch, (1981).   Google Scholar

[25]

R. Loxton, Q. Lin, V. Rehbock and K. L. Teo, Control parametrization for optimal control problems with continuous inequality constraints: New convergence results,, Numerical Algebra, 2 (2012), 571.  doi: 10.3934/naco.2012.2.571.  Google Scholar

[26]

H. J. Stetter, Analysis of discretization methods for ordinary differential equations,, In, 23 (1973).   Google Scholar

[27]

D. Sun and L. Qi, On NCP-functions,, Computational optimization—a tribute to Olvi Mangasarian, 13 (1999), 201.  doi: 10.1023/A:1008669226453.  Google Scholar

[28]

V. M. Veliov, Error analysis of discrete approximations to bang-bang optimal control problems: The linear case,, Control Cybern., 34 (2005), 967.   Google Scholar

show all references

References:
[1]

W. Alt, Discretization and mesh-independence of Newton's method for generalized equations,, in, 195 (1997), 1.   Google Scholar

[2]

W. Alt, Mesh-independence of the Lagrange-Newton method for nonlinear optimal control problems and their discretizations,, Optimization with data perturbations, 101 (2001), 101.  doi: 10.1023/A:1010912305365.  Google Scholar

[3]

W. Alt, R. Baier, M. Gerdts and F. Lempio, Approximation of linear control problems with bang-bang solutions,, Optimization, 62 (2013), 9.  doi: 10.1080/02331934.2011.568619.  Google Scholar

[4]

W. Alt, R. Baier, M. Gerdts and F. Lempio, Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions,, Numerical Algebra, 2 (2012), 547.  doi: 10.3934/naco.2012.2.547.  Google Scholar

[5]

N. Banihashemi and C. Y. Kaya, Inexact restoration for Euler discretization of box-constrained optimal control problems,, Journal of Optimization Theory and Applications, 156 (2013), 726.  doi: 10.1007/s10957-012-0140-4.  Google Scholar

[6]

C. Büskens, M. Gerdts, T. Nikolayzik, P. Kalmbach, M. Kunkel and D. Wassel, Homepage of the WORHP solver,, , (2010).   Google Scholar

[7]

B. Chen, X. Chen and C. Kanzow, A penalized Fischer-Burmeister NCP-function,, Mathematical Programming, 88 (2000), 211.  doi: 10.1007/PL00011375.  Google Scholar

[8]

F. H. Clarke, "Optimization and Nonsmooth Analysis,'', Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).   Google Scholar

[9]

A. L. Dontchev, W. W. Hager and K. Malanowski, Error bounds for Euler approximation of a state and control constrained optimal control problem,, Numerical Functional Analysis and Optimization, 21 (2000), 653.  doi: 10.1080/01630560008816979.  Google Scholar

[10]

A. L. Dontchev, W. W. Hager and V. M. Veliov, Second-order runge-kutta approximations in control constrained optimal control,, SIAM Journal on Numerical Analysis, 38 (2000), 202.  doi: 10.1137/S0036142999351765.  Google Scholar

[11]

I. S. Duff, MA57 - A code for the solution of sparse symmetric definite and indefinite systems,, ACM Transactions on Mathematical Software, 30 (2004), 118.  doi: 10.1145/992200.992202.  Google Scholar

[12]

C. Geiger and C. Kanzow, "Theorie und Numerik Restringierter Optimierungsaufgaben,'', Springer, (2002).  doi: 10.1007/978-3-642-56004-0.  Google Scholar

[13]

M. Gerdts, Global convergence of a nonsmooth Newton method for control-state constrained optimal control problems,, SIAM Journal on Optimization, 19 (2008), 326.  doi: 10.1137/060657546.  Google Scholar

[14]

M. Gerdts and B. Hüpping, Virtual control regularization of state constrained linear quadratic optimal control problems.,, Comput. Optim. Appl., 51 (2012), 867.  doi: 10.1007/s10589-010-9353-3.  Google Scholar

[15]

W. W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint system,, Numerische Mathematik, 87 (2000), 247.  doi: 10.1007/s002110000178.  Google Scholar

[16]

H. Heuser, "Funktionalanalysis: Theorie und Anwendung,'', B. G. Teubner, (2006).   Google Scholar

[17]

M. Josephy, Composing functions of bounded variation,, Proceedings of the American Mathematical Society, 83 (1981), 354.  doi: 10.1090/S0002-9939-1981-0624930-9.  Google Scholar

[18]

M. Kunkel, "Nonsmooth Newton Methods and Convergence of Discretized Optimal Control Problems Subject to DAEs,", PhD thesis, (2012), 706.   Google Scholar

[19]

F. Lempio, Numerische mathematik II - methoden der analysis,, Bayreuther Mathematische Schriften, 55 (1998).   Google Scholar

[20]

L. A. Ljusternik and W. I. Sobolew, "Elemente Der Funktionalanalysis,'', Fünfte Auflage. Übersetzung der zweiten russischen Auflage von Klaus Fiedler und herausgegeben von Konrad Gröger. Mathematische Lehrbücher und Monographien, (1976).   Google Scholar

[21]

K. Malanowski, On normality of Lagrange multipliers for state constrained optimal control problems,, Optimization, 52 (2003), 75.  doi: 10.1080/0233193021000058940.  Google Scholar

[22]

K. Malanowski, Ch. Büskens and H. Maurer, Convergence of approximations to nonlinear optimal control problems,, in, (1998), 253.   Google Scholar

[23]

M. McAsey, L. Mou and W. Han, Convergence of the forward-backward sweep method in optimal control,, Computational Optimization and Applications, 53 (2012), 207.  doi: 10.1007/s10589-011-9454-7.  Google Scholar

[24]

I. P. Natanson, "Theorie der Funktionen Einer Reellen Veränderlichen,'', Verlag Harri Deutsch, (1981).   Google Scholar

[25]

R. Loxton, Q. Lin, V. Rehbock and K. L. Teo, Control parametrization for optimal control problems with continuous inequality constraints: New convergence results,, Numerical Algebra, 2 (2012), 571.  doi: 10.3934/naco.2012.2.571.  Google Scholar

[26]

H. J. Stetter, Analysis of discretization methods for ordinary differential equations,, In, 23 (1973).   Google Scholar

[27]

D. Sun and L. Qi, On NCP-functions,, Computational optimization—a tribute to Olvi Mangasarian, 13 (1999), 201.  doi: 10.1023/A:1008669226453.  Google Scholar

[28]

V. M. Veliov, Error analysis of discrete approximations to bang-bang optimal control problems: The linear case,, Control Cybern., 34 (2005), 967.   Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[3]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[7]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[8]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[9]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[10]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[11]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[12]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[13]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[14]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[15]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[16]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[17]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[18]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[19]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[20]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]