-
Previous Article
The control parameterization method for nonlinear optimal control: A survey
- JIMO Home
- This Issue
-
Next Article
Towards an optimization theory for deforming dense granular materials: Minimum cost maximum flow solutions
Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation
1. | Universität der Bundeswehr München, Institut für Mathematik und Rechneranwendung, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany |
2. | Elektrobit Automotive GmbH, Am Wolfsmantel 46, 91058 Erlangen, Germany |
References:
[1] |
W. Alt, Discretization and mesh-independence of Newton's method for generalized equations,, in, 195 (1997), 1.
|
[2] |
W. Alt, Mesh-independence of the Lagrange-Newton method for nonlinear optimal control problems and their discretizations,, Optimization with data perturbations, 101 (2001), 101.
doi: 10.1023/A:1010912305365. |
[3] |
W. Alt, R. Baier, M. Gerdts and F. Lempio, Approximation of linear control problems with bang-bang solutions,, Optimization, 62 (2013), 9.
doi: 10.1080/02331934.2011.568619. |
[4] |
W. Alt, R. Baier, M. Gerdts and F. Lempio, Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions,, Numerical Algebra, 2 (2012), 547.
doi: 10.3934/naco.2012.2.547. |
[5] |
N. Banihashemi and C. Y. Kaya, Inexact restoration for Euler discretization of box-constrained optimal control problems,, Journal of Optimization Theory and Applications, 156 (2013), 726.
doi: 10.1007/s10957-012-0140-4. |
[6] |
C. Büskens, M. Gerdts, T. Nikolayzik, P. Kalmbach, M. Kunkel and D. Wassel, Homepage of the WORHP solver,, , (2010). |
[7] |
B. Chen, X. Chen and C. Kanzow, A penalized Fischer-Burmeister NCP-function,, Mathematical Programming, 88 (2000), 211.
doi: 10.1007/PL00011375. |
[8] |
F. H. Clarke, "Optimization and Nonsmooth Analysis,'', Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).
|
[9] |
A. L. Dontchev, W. W. Hager and K. Malanowski, Error bounds for Euler approximation of a state and control constrained optimal control problem,, Numerical Functional Analysis and Optimization, 21 (2000), 653.
doi: 10.1080/01630560008816979. |
[10] |
A. L. Dontchev, W. W. Hager and V. M. Veliov, Second-order runge-kutta approximations in control constrained optimal control,, SIAM Journal on Numerical Analysis, 38 (2000), 202.
doi: 10.1137/S0036142999351765. |
[11] |
I. S. Duff, MA57 - A code for the solution of sparse symmetric definite and indefinite systems,, ACM Transactions on Mathematical Software, 30 (2004), 118.
doi: 10.1145/992200.992202. |
[12] |
C. Geiger and C. Kanzow, "Theorie und Numerik Restringierter Optimierungsaufgaben,'', Springer, (2002).
doi: 10.1007/978-3-642-56004-0. |
[13] |
M. Gerdts, Global convergence of a nonsmooth Newton method for control-state constrained optimal control problems,, SIAM Journal on Optimization, 19 (2008), 326.
doi: 10.1137/060657546. |
[14] |
M. Gerdts and B. Hüpping, Virtual control regularization of state constrained linear quadratic optimal control problems.,, Comput. Optim. Appl., 51 (2012), 867.
doi: 10.1007/s10589-010-9353-3. |
[15] |
W. W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint system,, Numerische Mathematik, 87 (2000), 247.
doi: 10.1007/s002110000178. |
[16] |
H. Heuser, "Funktionalanalysis: Theorie und Anwendung,'', B. G. Teubner, (2006).
|
[17] |
M. Josephy, Composing functions of bounded variation,, Proceedings of the American Mathematical Society, 83 (1981), 354.
doi: 10.1090/S0002-9939-1981-0624930-9. |
[18] |
M. Kunkel, "Nonsmooth Newton Methods and Convergence of Discretized Optimal Control Problems Subject to DAEs,", PhD thesis, (2012), 706. |
[19] |
F. Lempio, Numerische mathematik II - methoden der analysis,, Bayreuther Mathematische Schriften, 55 (1998).
|
[20] |
L. A. Ljusternik and W. I. Sobolew, "Elemente Der Funktionalanalysis,'', Fünfte Auflage. Übersetzung der zweiten russischen Auflage von Klaus Fiedler und herausgegeben von Konrad Gröger. Mathematische Lehrbücher und Monographien, (1976).
|
[21] |
K. Malanowski, On normality of Lagrange multipliers for state constrained optimal control problems,, Optimization, 52 (2003), 75.
doi: 10.1080/0233193021000058940. |
[22] |
K. Malanowski, Ch. Büskens and H. Maurer, Convergence of approximations to nonlinear optimal control problems,, in, (1998), 253.
|
[23] |
M. McAsey, L. Mou and W. Han, Convergence of the forward-backward sweep method in optimal control,, Computational Optimization and Applications, 53 (2012), 207.
doi: 10.1007/s10589-011-9454-7. |
[24] |
I. P. Natanson, "Theorie der Funktionen Einer Reellen Veränderlichen,'', Verlag Harri Deutsch, (1981).
|
[25] |
R. Loxton, Q. Lin, V. Rehbock and K. L. Teo, Control parametrization for optimal control problems with continuous inequality constraints: New convergence results,, Numerical Algebra, 2 (2012), 571.
doi: 10.3934/naco.2012.2.571. |
[26] |
H. J. Stetter, Analysis of discretization methods for ordinary differential equations,, In, 23 (1973).
|
[27] |
D. Sun and L. Qi, On NCP-functions,, Computational optimization—a tribute to Olvi Mangasarian, 13 (1999), 201.
doi: 10.1023/A:1008669226453. |
[28] |
V. M. Veliov, Error analysis of discrete approximations to bang-bang optimal control problems: The linear case,, Control Cybern., 34 (2005), 967.
|
show all references
References:
[1] |
W. Alt, Discretization and mesh-independence of Newton's method for generalized equations,, in, 195 (1997), 1.
|
[2] |
W. Alt, Mesh-independence of the Lagrange-Newton method for nonlinear optimal control problems and their discretizations,, Optimization with data perturbations, 101 (2001), 101.
doi: 10.1023/A:1010912305365. |
[3] |
W. Alt, R. Baier, M. Gerdts and F. Lempio, Approximation of linear control problems with bang-bang solutions,, Optimization, 62 (2013), 9.
doi: 10.1080/02331934.2011.568619. |
[4] |
W. Alt, R. Baier, M. Gerdts and F. Lempio, Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions,, Numerical Algebra, 2 (2012), 547.
doi: 10.3934/naco.2012.2.547. |
[5] |
N. Banihashemi and C. Y. Kaya, Inexact restoration for Euler discretization of box-constrained optimal control problems,, Journal of Optimization Theory and Applications, 156 (2013), 726.
doi: 10.1007/s10957-012-0140-4. |
[6] |
C. Büskens, M. Gerdts, T. Nikolayzik, P. Kalmbach, M. Kunkel and D. Wassel, Homepage of the WORHP solver,, , (2010). |
[7] |
B. Chen, X. Chen and C. Kanzow, A penalized Fischer-Burmeister NCP-function,, Mathematical Programming, 88 (2000), 211.
doi: 10.1007/PL00011375. |
[8] |
F. H. Clarke, "Optimization and Nonsmooth Analysis,'', Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).
|
[9] |
A. L. Dontchev, W. W. Hager and K. Malanowski, Error bounds for Euler approximation of a state and control constrained optimal control problem,, Numerical Functional Analysis and Optimization, 21 (2000), 653.
doi: 10.1080/01630560008816979. |
[10] |
A. L. Dontchev, W. W. Hager and V. M. Veliov, Second-order runge-kutta approximations in control constrained optimal control,, SIAM Journal on Numerical Analysis, 38 (2000), 202.
doi: 10.1137/S0036142999351765. |
[11] |
I. S. Duff, MA57 - A code for the solution of sparse symmetric definite and indefinite systems,, ACM Transactions on Mathematical Software, 30 (2004), 118.
doi: 10.1145/992200.992202. |
[12] |
C. Geiger and C. Kanzow, "Theorie und Numerik Restringierter Optimierungsaufgaben,'', Springer, (2002).
doi: 10.1007/978-3-642-56004-0. |
[13] |
M. Gerdts, Global convergence of a nonsmooth Newton method for control-state constrained optimal control problems,, SIAM Journal on Optimization, 19 (2008), 326.
doi: 10.1137/060657546. |
[14] |
M. Gerdts and B. Hüpping, Virtual control regularization of state constrained linear quadratic optimal control problems.,, Comput. Optim. Appl., 51 (2012), 867.
doi: 10.1007/s10589-010-9353-3. |
[15] |
W. W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint system,, Numerische Mathematik, 87 (2000), 247.
doi: 10.1007/s002110000178. |
[16] |
H. Heuser, "Funktionalanalysis: Theorie und Anwendung,'', B. G. Teubner, (2006).
|
[17] |
M. Josephy, Composing functions of bounded variation,, Proceedings of the American Mathematical Society, 83 (1981), 354.
doi: 10.1090/S0002-9939-1981-0624930-9. |
[18] |
M. Kunkel, "Nonsmooth Newton Methods and Convergence of Discretized Optimal Control Problems Subject to DAEs,", PhD thesis, (2012), 706. |
[19] |
F. Lempio, Numerische mathematik II - methoden der analysis,, Bayreuther Mathematische Schriften, 55 (1998).
|
[20] |
L. A. Ljusternik and W. I. Sobolew, "Elemente Der Funktionalanalysis,'', Fünfte Auflage. Übersetzung der zweiten russischen Auflage von Klaus Fiedler und herausgegeben von Konrad Gröger. Mathematische Lehrbücher und Monographien, (1976).
|
[21] |
K. Malanowski, On normality of Lagrange multipliers for state constrained optimal control problems,, Optimization, 52 (2003), 75.
doi: 10.1080/0233193021000058940. |
[22] |
K. Malanowski, Ch. Büskens and H. Maurer, Convergence of approximations to nonlinear optimal control problems,, in, (1998), 253.
|
[23] |
M. McAsey, L. Mou and W. Han, Convergence of the forward-backward sweep method in optimal control,, Computational Optimization and Applications, 53 (2012), 207.
doi: 10.1007/s10589-011-9454-7. |
[24] |
I. P. Natanson, "Theorie der Funktionen Einer Reellen Veränderlichen,'', Verlag Harri Deutsch, (1981).
|
[25] |
R. Loxton, Q. Lin, V. Rehbock and K. L. Teo, Control parametrization for optimal control problems with continuous inequality constraints: New convergence results,, Numerical Algebra, 2 (2012), 571.
doi: 10.3934/naco.2012.2.571. |
[26] |
H. J. Stetter, Analysis of discretization methods for ordinary differential equations,, In, 23 (1973).
|
[27] |
D. Sun and L. Qi, On NCP-functions,, Computational optimization—a tribute to Olvi Mangasarian, 13 (1999), 201.
doi: 10.1023/A:1008669226453. |
[28] |
V. M. Veliov, Error analysis of discrete approximations to bang-bang optimal control problems: The linear case,, Control Cybern., 34 (2005), 967.
|
[1] |
Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61 |
[2] |
Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial & Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247 |
[3] |
Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174 |
[4] |
Max Gunzburger, Sung-Dae Yang, Wenxiang Zhu. Analysis and discretization of an optimal control problem for the forced Fisher equation. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 569-587. doi: 10.3934/dcdsb.2007.8.569 |
[5] |
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 |
[6] |
Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73 |
[7] |
Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553 |
[8] |
Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 |
[9] |
Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022 |
[10] |
Ryan Loxton, Qun Lin, Volker Rehbock, Kok Lay Teo. Control parameterization for optimal control problems with continuous inequality constraints: New convergence results. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 571-599. doi: 10.3934/naco.2012.2.571 |
[11] |
Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629 |
[12] |
Christian Clason, Barbara Kaltenbacher. Avoiding degeneracy in the Westervelt equation by state constrained optimal control. Evolution Equations & Control Theory, 2013, 2 (2) : 281-300. doi: 10.3934/eect.2013.2.281 |
[13] |
M. Arisawa, P.-L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 297-305. doi: 10.3934/dcds.1996.2.297 |
[14] |
Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579 |
[15] |
Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021 |
[16] |
Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505 |
[17] |
Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024 |
[18] |
Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082 |
[19] |
Takeshi Ohtsuka, Ken Shirakawa, Noriaki Yamazaki. Optimal control problem for Allen-Cahn type equation associated with total variation energy. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 159-181. doi: 10.3934/dcdss.2012.5.159 |
[20] |
IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054 |
2017 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]