January  2014, 10(1): 41-55. doi: 10.3934/jimo.2014.10.41

Catastrophe equity put options under stochastic volatility and catastrophe-dependent jumps

1. 

School of Management, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 130-701

2. 

Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713

3. 

Department of Business Administration, Yong In University, 134 Yongindaehak-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-714, South Korea

Received  September 2012 Revised  July 2013 Published  October 2013

This paper develops a catastrophe equity put (CatEPut) option model under realistic assumptions. To reflect the phenomena of real data, we adopt the following assumptions. First, following the reasoning in Lin and Wang [12], we assume that the loss index follows a compound Poisson process with jumps of a mixture of Erlangs. Second, the volatility of stock return is assumed to be stochastic as in Heston [8]. Under the assumptions, we derives a pricing formula for CatEPut options. Numerical examples are given to insist that the pricing formula can be easily implemented numerically. We also confirm the validity and accuracy of implementation of the pricing formula by comparing the numerical results obtained by the pricing formula with those obtained by the Monte Carlo simulation.
Citation: Hwa-Sung Kim, Bara Kim, Jerim Kim. Catastrophe equity put options under stochastic volatility and catastrophe-dependent jumps. Journal of Industrial & Management Optimization, 2014, 10 (1) : 41-55. doi: 10.3934/jimo.2014.10.41
References:
[1]

G. Bakshi, C. Cao and Z. Chen, Empirical performance of alternative option pricing models,, Journal of Finance, 52 (1997), 2003.

[2]

D. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in Deutschemark options,, Review of Financial Studies, 9 (1996), 69.

[3]

F. Black and S. Myron, The pricing of options and corporate liabilities,, Journal of Political Economy, 81 (1973), 637. doi: 10.1086/260062.

[4]

L.-F. Chang and M.-W. Hung, Analytical valuation of catastrocphe equity options with negative exponential jumps,, Insurance: Mathematics and Economics, 44 (2009), 59. doi: 10.1016/j.insmatheco.2008.09.009.

[5]

R. Cont, Empirical properties of asset returns: Stylized facts and statistical issues,, Quantitative Finance, 1 (2001), 223.

[6]

J. C. Cox and S. A. Ross, The valuation of options for alternative stochastic processes,, Journal of Financial Economics, 3 (1976), 145. doi: 10.1016/0304-405X(76)90023-4.

[7]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin,, North American Actuarial Journal, 2 (1998), 48. doi: 10.1080/10920277.1998.10595671.

[8]

S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options,, Review of Financial Studies, 6 (1993), 327. doi: 10.1093/rfs/6.2.327.

[9]

J. Hull and A. White, The pricing of options with stochastic volatilities,, Journal of Finance, 42 (1987), 281.

[10]

S. Jaimungal and T. Wang, Catastrophe options with stochastic interest rates and compound Poisson losses,, Insurance: Mathematics and Economics, 38 (2006), 469. doi: 10.1016/j.insmatheco.2005.11.008.

[11]

B. Kim, J. Kim, K.-S. Moon and I.-S. Wee, Valuation of power options under Heston's stochastic volatility model,, Journal of Economic Dynamics and Control, 36 (2012), 1796. doi: 10.1016/j.jedc.2012.05.005.

[12]

X. S. Lin and T. Wang, Pricing perpetual American catastrophe put options: A penalty function approach,, Insurance: Mathematics and Economics, 44 (2009), 287. doi: 10.1016/j.insmatheco.2008.04.002.

[13]

D. Madan, P. Carr and E. Chang, The variance gamma process and option pricing,, European Finance Review, 2 (1998), 79. doi: 10.1023/A:1009703431535.

[14]

R. Merton, Option pricing when the underlying stock returns are discontinuous,, Journal of Financial Economics, 4 (1976), 125. doi: 10.1016/0304-405X(76)90022-2.

[15]

L. Scott, Pricing stock options in a jump diffusion model with stochastic volatility and interest rates: Applications of Fourier inversion methods,, Mathematical Finance, 7 (1997), 413. doi: 10.1111/1467-9965.00039.

[16]

E. Stein and J. Stein, Stock price distributions with stochastic volatility,, Review of Financial Studies, 4 (1991), 727. doi: 10.1093/rfs/4.4.727.

show all references

References:
[1]

G. Bakshi, C. Cao and Z. Chen, Empirical performance of alternative option pricing models,, Journal of Finance, 52 (1997), 2003.

[2]

D. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in Deutschemark options,, Review of Financial Studies, 9 (1996), 69.

[3]

F. Black and S. Myron, The pricing of options and corporate liabilities,, Journal of Political Economy, 81 (1973), 637. doi: 10.1086/260062.

[4]

L.-F. Chang and M.-W. Hung, Analytical valuation of catastrocphe equity options with negative exponential jumps,, Insurance: Mathematics and Economics, 44 (2009), 59. doi: 10.1016/j.insmatheco.2008.09.009.

[5]

R. Cont, Empirical properties of asset returns: Stylized facts and statistical issues,, Quantitative Finance, 1 (2001), 223.

[6]

J. C. Cox and S. A. Ross, The valuation of options for alternative stochastic processes,, Journal of Financial Economics, 3 (1976), 145. doi: 10.1016/0304-405X(76)90023-4.

[7]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin,, North American Actuarial Journal, 2 (1998), 48. doi: 10.1080/10920277.1998.10595671.

[8]

S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options,, Review of Financial Studies, 6 (1993), 327. doi: 10.1093/rfs/6.2.327.

[9]

J. Hull and A. White, The pricing of options with stochastic volatilities,, Journal of Finance, 42 (1987), 281.

[10]

S. Jaimungal and T. Wang, Catastrophe options with stochastic interest rates and compound Poisson losses,, Insurance: Mathematics and Economics, 38 (2006), 469. doi: 10.1016/j.insmatheco.2005.11.008.

[11]

B. Kim, J. Kim, K.-S. Moon and I.-S. Wee, Valuation of power options under Heston's stochastic volatility model,, Journal of Economic Dynamics and Control, 36 (2012), 1796. doi: 10.1016/j.jedc.2012.05.005.

[12]

X. S. Lin and T. Wang, Pricing perpetual American catastrophe put options: A penalty function approach,, Insurance: Mathematics and Economics, 44 (2009), 287. doi: 10.1016/j.insmatheco.2008.04.002.

[13]

D. Madan, P. Carr and E. Chang, The variance gamma process and option pricing,, European Finance Review, 2 (1998), 79. doi: 10.1023/A:1009703431535.

[14]

R. Merton, Option pricing when the underlying stock returns are discontinuous,, Journal of Financial Economics, 4 (1976), 125. doi: 10.1016/0304-405X(76)90022-2.

[15]

L. Scott, Pricing stock options in a jump diffusion model with stochastic volatility and interest rates: Applications of Fourier inversion methods,, Mathematical Finance, 7 (1997), 413. doi: 10.1111/1467-9965.00039.

[16]

E. Stein and J. Stein, Stock price distributions with stochastic volatility,, Review of Financial Studies, 4 (1991), 727. doi: 10.1093/rfs/4.4.727.

[1]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

[2]

Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial & Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783

[3]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control & Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[4]

Qing-Qing Yang, Wai-Ki Ching, Wanhua He, Tak-Kuen Siu. Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales. Journal of Industrial & Management Optimization, 2019, 15 (1) : 293-318. doi: 10.3934/jimo.2018044

[5]

Isabelle Kuhwald, Ilya Pavlyukevich. Bistable behaviour of a jump-diffusion driven by a periodic stable-like additive process. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3175-3190. doi: 10.3934/dcdsb.2016092

[6]

Wuyuan Jiang. The maximum surplus before ruin in a jump-diffusion insurance risk process with dependence. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3037-3050. doi: 10.3934/dcdsb.2018298

[7]

Ishak Alia. A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Mathematical Control & Related Fields, 2019, 9 (3) : 541-570. doi: 10.3934/mcrf.2019025

[8]

Donny Citra Lesmana, Song Wang. A numerical scheme for pricing American options with transaction costs under a jump diffusion process. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1793-1813. doi: 10.3934/jimo.2017019

[9]

Tak Kuen Siu, Howell Tong, Hailiang Yang. Option pricing under threshold autoregressive models by threshold Esscher transform. Journal of Industrial & Management Optimization, 2006, 2 (2) : 177-197. doi: 10.3934/jimo.2006.2.177

[10]

Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial & Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043

[11]

Xin Zhang, Hui Meng, Jie Xiong, Yang Shen. Robust optimal investment and reinsurance of an insurer under Jump-diffusion models. Mathematical Control & Related Fields, 2019, 9 (1) : 59-76. doi: 10.3934/mcrf.2019003

[12]

Xiao-Qian Jiang, Lun-Chuan Zhang. A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-978. doi: 10.3934/dcdss.2019065

[13]

Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control & Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21

[14]

Chuancun Yin, Kam Chuen Yuen. Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1247-1262. doi: 10.3934/jimo.2015.11.1247

[15]

Dan Li, Jing'an Cui, Yan Zhang. Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2069-2088. doi: 10.3934/dcdsb.2015.20.2069

[16]

Lorella Fatone, Francesca Mariani, Maria Cristina Recchioni, Francesco Zirilli. Pricing realized variance options using integrated stochastic variance options in the Heston stochastic volatility model. Conference Publications, 2007, 2007 (Special) : 354-363. doi: 10.3934/proc.2007.2007.354

[17]

Laurent Devineau, Pierre-Edouard Arrouy, Paul Bonnefoy, Alexandre Boumezoued. Fast calibration of the Libor market model with stochastic volatility and displaced diffusion. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-31. doi: 10.3934/jimo.2019025

[18]

Wei Wang, Linyi Qian, Xiaonan Su. Pricing and hedging catastrophe equity put options under a Markov-modulated jump diffusion model. Journal of Industrial & Management Optimization, 2015, 11 (2) : 493-514. doi: 10.3934/jimo.2015.11.493

[19]

Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-10. doi: 10.3934/jimo.2018158

[20]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]