American Institute of Mathematical Sciences

April  2014, 10(2): 621-636. doi: 10.3934/jimo.2014.10.621

LS-SVM approximate solution for affine nonlinear systems with partially unknown functions

 1 Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, Tianjin, 300072, China, China, China 2 Department of Computing, Curtin University of Technology, Perth, WA 6102

Received  January 2013 Revised  June 2013 Published  October 2013

By using the Least Squares Support Vector Machines (LS-SVMs), we develop a numerical approach to find an approximate solution for affine nonlinear systems with partially unknown functions. This approach can obtain continuous and differential approximate solutions of the nonlinear differential equations, and can also identify the unknown nonlinear part through a set of measured data points. Technically, we first map the known part of the affine nonlinear systems into high dimensional feature spaces and derive the form of approximate solution. Then the original problem is formulated as an approximation problem via kernel trick with LS-SVMs. Furthermore, the approximation of the known part can be expressed via some linear equations with coefficient matrices as coupling square matrices, and the unknown part can be identified by its relationship to the known part and the approximate solution of affine nonlinear systems. Finally, several examples for different systems are presented to illustrate the validity of the proposed approach.
Citation: Guoshan Zhang, Shiwei Wang, Yiming Wang, Wanquan Liu. LS-SVM approximate solution for affine nonlinear systems with partially unknown functions. Journal of Industrial & Management Optimization, 2014, 10 (2) : 621-636. doi: 10.3934/jimo.2014.10.621
References:
 [1] A. Akyyuz-Dascioglu and H. Cerdik-Yaslan, The solution of high-order nonlinear ordinary differential equations by Chebyshev Series,, Applied Mathematics and Computation, 217 (2011), 5658. doi: 10.1016/j.amc.2010.12.044. [2] S. J. An, W. Q. Liu and S. Venkatesh, Fast Exact cross-validation of least squares support vector machines,, Pattern Recognition, 40 (2007), 2154. [3] T. Falck, K. Pelckmans, J. A. K. Suykens and B. De Moor, Identification of Wiener-Hammerstein Systems using LS-SVMs,, 15th IFAC Symposium on System Identification, (2009). [4] Z. Guan and J. F. Lu, Basic of Numerical Analysis(Chinese),, 2nd edition, (2010). [5] A. Isidori, Nonlinear Control Systems: An Introduction,, 3rd edition, (1995). [6] D. R. Kincaid and E. W. Cheney, Numerical Analysis: Mathematics of Scientific Computing,, 3rd edition, (2002). [7] I. E. Lagaris, A. Likas and D. I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations,, IEEE Transactions on Neural Networks, 9 (1998), 987. doi: 10.1109/72.712178. [8] H. Lee and I. S. Kang, Neural algorithm for solving differential equations,, Journal of Computational Physics, 91 (1990), 110. doi: 10.1016/0021-9991(90)90007-N. [9] K. S. McFall and J. R. Mahan, Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions,, IEEE Transactions on Neural Networks, 20 (2009), 1221. doi: 10.1109/TNN.2009.2020735. [10] S. Mehrkanoon, T. Falck and J. A. K. Suykens, Approximate solutions to ordinary differential equations using least squares support vector machines,, IEEE Trans. on Neural Networks and Learning Systems, 23 (2012), 1356. doi: 10.1109/TNNLS.2012.2202126. [11] M. Popescu, On minimum quadratic functional control of affine nonlinear systems,, Nonlinear Analysis: Theory, 56 (2004), 1165. doi: 10.1016/j.na.2003.11.009. [12] J. I. Ramos, Linearization techniques for singular initial-value problems of ordinary differential equations,, Applied Mathematics and Computation, 161 (2005), 525. doi: 10.1016/j.amc.2003.12.047. [13] P. Ramuhalli, L. Udpa and S. S. Udpa, Finite-element neural networks for solving differential equations,, IEEE Transactions on Neural Networks, 16 (2005), 1381. doi: 10.1109/TNN.2005.857945. [14] J. A. K. Suykens, T. V. Gestel, J. Brabanter,B. D. Moor and J. Vandewalle, Least Squares Support Vector Machines,, 1st edition, (2002). [15] J. A. K. Suykens, J. Vandewalle and B. D. Moor, Optimal control by least squares support vector machines,, Neural Networks, 14 (2001), 23. doi: 10.1016/S0893-6080(00)00077-0. [16] I. G. Tsoulos, D. Gavrilis and E. Glavas, Solving differential equations with constructed neural networks,, Neurocomputing, 72 (2009), 2385. doi: 10.1016/j.neucom.2008.12.004. [17] V. Vapnik, The Nature of Statistical Learning Theory,, 1st edition, (). [18] A. M. Wazwaz, A new method for solving initial value problems in second-order ordinary differential equations,, Applied Mathematics and Computation, 128 (2002), 45. doi: 10.1016/S0096-3003(01)00021-2.

show all references

References:
 [1] A. Akyyuz-Dascioglu and H. Cerdik-Yaslan, The solution of high-order nonlinear ordinary differential equations by Chebyshev Series,, Applied Mathematics and Computation, 217 (2011), 5658. doi: 10.1016/j.amc.2010.12.044. [2] S. J. An, W. Q. Liu and S. Venkatesh, Fast Exact cross-validation of least squares support vector machines,, Pattern Recognition, 40 (2007), 2154. [3] T. Falck, K. Pelckmans, J. A. K. Suykens and B. De Moor, Identification of Wiener-Hammerstein Systems using LS-SVMs,, 15th IFAC Symposium on System Identification, (2009). [4] Z. Guan and J. F. Lu, Basic of Numerical Analysis(Chinese),, 2nd edition, (2010). [5] A. Isidori, Nonlinear Control Systems: An Introduction,, 3rd edition, (1995). [6] D. R. Kincaid and E. W. Cheney, Numerical Analysis: Mathematics of Scientific Computing,, 3rd edition, (2002). [7] I. E. Lagaris, A. Likas and D. I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations,, IEEE Transactions on Neural Networks, 9 (1998), 987. doi: 10.1109/72.712178. [8] H. Lee and I. S. Kang, Neural algorithm for solving differential equations,, Journal of Computational Physics, 91 (1990), 110. doi: 10.1016/0021-9991(90)90007-N. [9] K. S. McFall and J. R. Mahan, Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions,, IEEE Transactions on Neural Networks, 20 (2009), 1221. doi: 10.1109/TNN.2009.2020735. [10] S. Mehrkanoon, T. Falck and J. A. K. Suykens, Approximate solutions to ordinary differential equations using least squares support vector machines,, IEEE Trans. on Neural Networks and Learning Systems, 23 (2012), 1356. doi: 10.1109/TNNLS.2012.2202126. [11] M. Popescu, On minimum quadratic functional control of affine nonlinear systems,, Nonlinear Analysis: Theory, 56 (2004), 1165. doi: 10.1016/j.na.2003.11.009. [12] J. I. Ramos, Linearization techniques for singular initial-value problems of ordinary differential equations,, Applied Mathematics and Computation, 161 (2005), 525. doi: 10.1016/j.amc.2003.12.047. [13] P. Ramuhalli, L. Udpa and S. S. Udpa, Finite-element neural networks for solving differential equations,, IEEE Transactions on Neural Networks, 16 (2005), 1381. doi: 10.1109/TNN.2005.857945. [14] J. A. K. Suykens, T. V. Gestel, J. Brabanter,B. D. Moor and J. Vandewalle, Least Squares Support Vector Machines,, 1st edition, (2002). [15] J. A. K. Suykens, J. Vandewalle and B. D. Moor, Optimal control by least squares support vector machines,, Neural Networks, 14 (2001), 23. doi: 10.1016/S0893-6080(00)00077-0. [16] I. G. Tsoulos, D. Gavrilis and E. Glavas, Solving differential equations with constructed neural networks,, Neurocomputing, 72 (2009), 2385. doi: 10.1016/j.neucom.2008.12.004. [17] V. Vapnik, The Nature of Statistical Learning Theory,, 1st edition, (). [18] A. M. Wazwaz, A new method for solving initial value problems in second-order ordinary differential equations,, Applied Mathematics and Computation, 128 (2002), 45. doi: 10.1016/S0096-3003(01)00021-2.
 [1] Yanfei Lu, Qingfei Yin, Hongyi Li, Hongli Sun, Yunlei Yang, Muzhou Hou. Solving higher order nonlinear ordinary differential equations with least squares support vector machines. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019012 [2] Dengfeng Lü, Shuangjie Peng. On the positive vector solutions for nonlinear fractional Laplacian systems with linear coupling. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3327-3352. doi: 10.3934/dcds.2017141 [3] Uwe Schäfer, Marco Schnurr. A comparison of simple tests for accuracy of approximate solutions to nonlinear systems with uncertain data. Journal of Industrial & Management Optimization, 2006, 2 (4) : 425-434. doi: 10.3934/jimo.2006.2.425 [4] K. Schittkowski. Optimal parameter selection in support vector machines. Journal of Industrial & Management Optimization, 2005, 1 (4) : 465-476. doi: 10.3934/jimo.2005.1.465 [5] Hong-Gunn Chew, Cheng-Chew Lim. On regularisation parameter transformation of support vector machines. Journal of Industrial & Management Optimization, 2009, 5 (2) : 403-415. doi: 10.3934/jimo.2009.5.403 [6] Keiji Tatsumi, Masashi Akao, Ryo Kawachi, Tetsuzo Tanino. Performance evaluation of multiobjective multiclass support vector machines maximizing geometric margins. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 151-169. doi: 10.3934/naco.2011.1.151 [7] Ya-Xiang Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 15-34. doi: 10.3934/naco.2011.1.15 [8] Hassan Mohammad, Mohammed Yusuf Waziri, Sandra Augusta Santos. A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 1-13. doi: 10.3934/naco.2019001 [9] Fengqiu Liu, Xiaoping Xue. Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels. Journal of Industrial & Management Optimization, 2016, 12 (1) : 285-301. doi: 10.3934/jimo.2016.12.285 [10] Ye Tian, Wei Yang, Gene Lai, Menghan Zhao. Predicting non-life insurer's insolvency using non-kernel fuzzy quadratic surface support vector machines. Journal of Industrial & Management Optimization, 2019, 15 (2) : 985-999. doi: 10.3934/jimo.2018081 [11] Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483 [12] Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749 [13] Jing Yang. Segregated vector Solutions for nonlinear Schrödinger systems with electromagnetic potentials. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1785-1805. doi: 10.3934/cpaa.2017087 [14] Yu Han, Nan-Jing Huang. Some characterizations of the approximate solutions to generalized vector equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1135-1151. doi: 10.3934/jimo.2016.12.1135 [15] Qi Wang, Yanren Hou. Determining an obstacle by far-field data measured at a few spots. Inverse Problems & Imaging, 2015, 9 (2) : 591-600. doi: 10.3934/ipi.2015.9.591 [16] Sigurdur F. Hafstein, Christopher M. Kellett, Huijuan Li. Computing continuous and piecewise affine lyapunov functions for nonlinear systems. Journal of Computational Dynamics, 2015, 2 (2) : 227-246. doi: 10.3934/jcd.2015004 [17] Fabio Punzo. Support properties of solutions to nonlinear parabolic equations with variable density in the hyperbolic space. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 657-670. doi: 10.3934/dcdss.2012.5.657 [18] Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151 [19] Mila Nikolova. Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inverse Problems & Imaging, 2008, 2 (1) : 133-149. doi: 10.3934/ipi.2008.2.133 [20] Octavian G. Mustafa, Yuri V. Rogovchenko. Existence of square integrable solutions of perturbed nonlinear differential equations. Conference Publications, 2003, 2003 (Special) : 647-655. doi: 10.3934/proc.2003.2003.647

2017 Impact Factor: 0.994