\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Sensor deployment for pipeline leakage detection via optimal boundary control strategies

Abstract / Introduction Related Papers Cited by
  • We consider a multi-agent control problem using PDE techniques for a novel sensing problem arising in the leakage detection and localization of offshore pipelines. A continuous protocol is proposed using parabolic PDEs and then a boundary control law is designed using the maximum principle. Both analytical and numerical solutions of the optimality conditions are studied.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Ahmed and K. Teo, Optimal Control of Distributed Parameter Systems, North Holland, 1981.

    [2]

    S. Anita, V. Arnautu and V. Capasso, An Introduction to Optimal Control Problems in Life Sciences and Economics, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser/Springer, New York, 2011.doi: 10.1007/978-0-8176-8098-5.

    [3]

    V. Arnautu and P. Neittaanmaki, Optimal Control from Theory to Computer Programs, Kluwer Academic, Dordrecht, 2003.doi: 10.1007/978-94-017-2488-3.

    [4]

    P. Barooah, P. Mehta and J. Hespanha, Mistuning-based control design to improve closed-loop stability margin of vehicular platoons, IEEE Transactions on Automatic Control, 54 (2009), 2100-2113.doi: 10.1109/TAC.2009.2026934.

    [5]

    S. Blazic, D. Matko and G. Geiger, Simple model of a multi-batch driven pipeline, Mathematics and Computers in Simulation, 64 (2004), 617-630.doi: 10.1016/j.matcom.2003.11.013.

    [6]

    F. Bullo, J. Cortes and S. Martinez, Distributed Control of Robotic Networks (In Applied Mathematics Series), Princeton University Press, New York, 2009.

    [7]

    M. Chen and D. Georges, Nonlinear optimal control of an open-channel hydraulic system based on an infinite-dimensional model, in Proceeding of the Conference on Decision and Control, vol. 5, 1999.

    [8]

    H. Cho and G. Hwang, Optimal design for dynamic spectrum access in cognitive radio networks under rayleigh fading, Journal of Industrial and Management Optimization, 8 (2012), 821-840.doi: 10.3934/jimo.2012.8.821.

    [9]

    E. Chow, L. Hendrix, M. Herberg, S. Itoh, B. Kong, M. Lall and P. Srevens, Pipeline Politics in Asia: The Intersection of Demand, Energy Markets, and Supply Routes, National Bureau of Asian Research, 2010.

    [10]

    Y. Ding and S. Wang, Optimal control of open-channel flow using adjoint sensitivity analysis, Journal of Hydraulic Engineering-ASCE, 132 (2006), 1215-1228.doi: 10.1061/(ASCE)0733-9429(2006)132:11(1215).

    [11]

    Z. Feng, K. Teo and V. Rehbock, Branch and bound method for sensor scheduling in discrete time, Journal of Industrial and Management Optimization, 1 (2005), 499-512.doi: 10.3934/jimo.2005.1.499.

    [12]

    Z. Feng, K. Teo and V. Rehbock, Hybrid method for a general optimal sensor scheduling problem in discrete time, Automatica, 44 (2008), 1295-1303.doi: 10.1016/j.automatica.2007.09.024.

    [13]

    G. Ferrari-Trecate, A. Buffa and M. Gati, Analysis of coordination in multi-agent systems through partial difference equations, IEEE Transactions on Automatic Control, 51 (2006), 1058-1063.doi: 10.1109/TAC.2006.876805.

    [14]

    P. Frihauf and M. Krstic, Leader-enabled deployment onto planar curves: A pde-based approach, IEEE Transactions on Automatic Control, 56 (2011), 1791-1806.doi: 10.1109/TAC.2010.2092210.

    [15]

    R. Glowinski, J. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach, (Encyclopedia of Mathematics and its Applications) Cambridge University Press, Cambridge, 2008.doi: 10.1017/CBO9780511721595.

    [16]

    H. Hao and P. Barooah, On achieving size-independent stability margin of vehicular lattice formations with distributed control, IEEE Transactions on Automatic Control, 57 (2012), 2688-2694.doi: 10.1109/TAC.2012.2191179.

    [17]

    H. Hao, P. Barooah and P. Mehta, Stability margin scaling laws for distributed formation control as a function of network structure, IEEE Transactions on Automatic Control, 56 (2011), 923-929.doi: 10.1109/TAC.2010.2103416.

    [18]

    J. Kim, K. Kim, V. Natarajan, S. Kelly and J. Bentsman, PdE-based model reference adaptive control of uncertain heterogeneous multiagent networks, Nonlinear Analysis: Hybrid Systems, 2 (2008), 1152-1167.doi: 10.1016/j.nahs.2008.09.008.

    [19]

    J. Kim, V. Natarajan, S. Kelly and J. Bentsman, Disturbance rejection in robust PdE-based MRAC laws for uncertain heterogeneous multiagent networks under boundary reference, Nonlinear Analysis: Hybrid Systems, 4 (2010), 484-495.doi: 10.1016/j.nahs.2009.11.005.

    [20]

    M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs, SIAM, Phaladelphia, 2008.doi: 10.1137/1.9780898718607.

    [21]

    Z. Lin, Distributed Control and Analysis of Coupled Cell Systems, VDM Verlag, Germany, 2008.

    [22]

    W. Litvinov, Optimal control of electrorheological clutch described by nonlinear parabolic equation with nonlocal boundary conditions, Journal of Industrial and Management Optimization, 7 (2011), 291-315.doi: 10.3934/jimo.2011.7.291.

    [23]

    M. Liu, S. Zang and D. Zhou, Fast leak detection and location of gas pipelines based on an adaptive particle filter, International Journal of Applied Mathematics and Computer Science, 15.

    [24]

    M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks (In Applied Mathematics Series), Princeton University Press, New York, 2010.

    [25]

    T. Meurer and M. Krstic, Finite-time multi-agent deployment: A nonlinear pde motion planning approach, Automatica, 47 (2011), 2534-2542.doi: 10.1016/j.automatica.2011.08.045.

    [26]

    S. Moura and H. Fathy, Optimal boundary control & estimation of diffusion-reaction PDEs, in Proceeding of the Conference on Decision and Control, 2011, 921-928.

    [27]

    R. Murray, Recent research in cooperative control of multi-vehicle systems, Journal of Dynamical Systems, Measurement and Control, 571-583.

    [28]

    R. Olfati-Saber and R. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Transactions on Automatic Control, 49 (2004), 1520-1533.doi: 10.1109/TAC.2004.834113.

    [29]

    P. Parfomak, Pipeline Safety and Security: Federal Programs, Congress Research Services (CRS) Report for Congress, Washington, DC, 2008.

    [30]

    M. Rafiee, Q. Wu and A. Bayen, Kalman filter based estimation of flow states in open channels using Lagrangian sensing, Proceedings of the Conference on Decision and Control, (2009), 8266-8271.doi: 10.1109/CDC.2009.5400661.

    [31]

    W. Ren and Y. Cao, Distributed Coordination of Multi-agent Networks, (Communications and Control Engineering Series) Springer-Verlag, London, 2011.

    [32]

    A. Sarlette and R. Sepulchre, A PDE viewpoint on basic properties of coordination algorithms with symmetries, in Proceedings of the Conference on Decision and Control, 2009, 5139-5144.doi: 10.1109/CDC.2009.5400570.

    [33]

    J. Strikwerda, Finite Difference Schemes and Partial Differential Equations, 2nd Edition, SIAM, Philadephia, 2004.doi: 10.1137/1.9780898717938.

    [34]

    F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications (Graduate Studies in Mathematics), American Mathematical Society, New York, 2010.

    [35]

    G. Wang and H. Ye, Leakage Detection and Localization of Long Distance Fluid Pipelines, Tsinghua University Press, Beijing, 2010, (In Chinese).

    [36]

    Z. Wang, H. Zhang, J. Feng and S. Lun, Present situation and prospect on leak detection and localization techniques for long distance fluid transport pipeline, Control and Instruments in Chemical Industry, 30 (2003), 5-10.

    [37]

    S. Woon, V. Rehbock and R. Loxton, Global optimization method for continuous-time sensor scheduling, Nonlinear Dynamics and Systems Theory, 10 (2010), 175-188.

    [38]

    S. Woon, V. Rehbock and R. Loxton, Towards global solutions of optimal discrete-valued control problems, Optimal Control Applications and Methods, 33 (2012), 576-594.doi: 10.1002/oca.1015.

    [39]

    K. Yiu, K. Mak and K. Teo, Airfoil design via optimal control theory, Journal of Industrial and Management Optimization, 1 (2005), 133-148.doi: 10.3934/jimo.2005.1.133.

    [40]

    C. Yu, B. Li, R. Loxton and K. Teo, Optimal discrete-valued control computation, Journal of Global Optimization, 56 (2013), 503-518.doi: 10.1007/s10898-012-9858-7.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(263) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return