• Previous Article
    An inexact semismooth Newton method for variational inequality with symmetric cone constraints
  • JIMO Home
  • This Issue
  • Next Article
    Levitin-Polyak well-posedness of a system of generalized vector variational inequality problems
July  2015, 11(3): 715-731. doi: 10.3934/jimo.2015.11.715

Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy

1. 

College of Science, Yanshan University, Qinhuangdao, 066004, China, China

2. 

Department of Intelligence and Informatics, Konan University, Kobe 658-8501

Received  February 2013 Revised  June 2014 Published  October 2014

In this paper, we consider the balking behavior of customers in an M/G/1 queueing system with a removable server under N-policy, where the server may be turned off when no customers are present, and be turned on when the queue length reaches size $N$. Arriving customers decide whether to join the system or balk, based on a linear reward-cost structure that incorporates their desire for service, as well as their unwillingness for waiting. For the unobservable and partially observable queues, we first analyze the stationary behavior of the system; then derive the equilibrium mixed strategies and compare them to the socially optimal strategies. We take the number $N$ as a decision variable and discuss the optimal operations policy in equilibrium states. Finally, we present two examples to demonstrate some of the phenomena in the considered models.
Citation: Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial & Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715
References:
[1]

A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times,, Queueing Systems, 56 (2007), 213. doi: 10.1007/s11134-007-9036-7. Google Scholar

[2]

A. Economou, A. Gómez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967. doi: 10.1016/j.peva.2011.07.001. Google Scholar

[3]

N. M. Edelson and D. K. Hildebrand, Congestion tolls for Poisson queueing processes,, Econometrica, 43 (1975), 81. doi: 10.2307/1913415. Google Scholar

[4]

A. Economou and S. Kanta, Equillibrium balking strategies in the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696. doi: 10.1016/j.orl.2008.06.006. Google Scholar

[5]

A. Economou and S. Kanta, Optimal balking strategies and pricing for the single server Markovian queue with compartmented waiting space,, Queueing Systems, 59 (2008), 237. doi: 10.1007/s11134-008-9083-8. Google Scholar

[6]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues,, Operations Research, 59 (2011), 986. doi: 10.1287/opre.1100.0907. Google Scholar

[7]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous customers,, European Journal of Operational Research, 222 (2012), 278. doi: 10.1016/j.ejor.2012.05.026. Google Scholar

[8]

P. Guo and Q. Li, Strategic behavior and social optimization in partially-observable Markovian vacation queues,, Operations Research Letters, 41 (2013), 277. doi: 10.1016/j.orl.2013.02.005. Google Scholar

[9]

P. Guo and P. Zipkin, Analysis and comparison of queues with different levels of delay information,, Management Science, 53 (2007), 962. doi: 10.1287/mnsc.1060.0686. Google Scholar

[10]

R. Hassin and M. Haviv, Equilibrium Behavior in Queueing Systems: To Queue or Not to Queue,, Kluwer Academic Publishers, (2003). doi: 10.1007/978-1-4615-0359-0. Google Scholar

[11]

M. Haviv and Y. Kerner, On balking from an empty queue,, Queueing Systems, 55 (2007), 239. doi: 10.1007/s11134-007-9020-2. Google Scholar

[12]

Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue,, Games and Economic Behavior, 71 (2011), 521. doi: 10.1016/j.geb.2010.06.002. Google Scholar

[13]

L. Li, J. Wang and F. Zhang, Equilibrium customer strategies in Markovian queues with partial breakdowns,, Computers & Industrial Engineering, 66 (2013), 751. doi: 10.1016/j.cie.2013.09.023. Google Scholar

[14]

P. Naor, The regulation of queue size by levying tolls,, Econometrica, 37 (1969), 15. doi: 10.2307/1909200. Google Scholar

[15]

W. Stein, A. Rapoport, D. Seale, H. Zhang and R. Zwick, Batch queues with choice of arrivals: Equilibrium analysis and experimental study,, Games and Economic Behavior, 59 (2007), 345. doi: 10.1016/j.geb.2006.08.008. Google Scholar

[16]

W. Sun and N. Tian, Contrast of the equilibrium and socially optimal strategies in a queue with vacations,, Journal of Computational Information Systems, 4 (2008), 2167. Google Scholar

[17]

H. Takagi, Queueing Analysis-A Foundation of Performance Evaluation, Vol. 1: Vacation and Prioriry Systems, Part I,, North-Holland, (1991). Google Scholar

[18]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, Springer, (2006). Google Scholar

[19]

R. Tian and D. Yue, Optimal balking strategies in an Markvian queue with a single vacation,, Journal of Information and Computational Science, 9 (2012), 2827. Google Scholar

[20]

F. Zhang, J. Wang and B. Liu, Equilibrium joining probabilities in observable queues with general service and setup times,, Journal of Industrial and Management Optimization, 9 (2013), 901. doi: 10.3934/jimo.2013.9.901. Google Scholar

[21]

F. Zhang, J. Wang and B. Liu, Equilibrium balking strategies in Markovian queues with working vacations,, Applied Mathematical Modelling, 37 (2013), 8264. doi: 10.1016/j.apm.2013.03.049. Google Scholar

[22]

F. Zhang, J. Wang and B. Liu, On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations,, Journal of Industrial and Management Optimization, 8 (2012), 861. doi: 10.3934/jimo.2012.8.861. Google Scholar

show all references

References:
[1]

A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times,, Queueing Systems, 56 (2007), 213. doi: 10.1007/s11134-007-9036-7. Google Scholar

[2]

A. Economou, A. Gómez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967. doi: 10.1016/j.peva.2011.07.001. Google Scholar

[3]

N. M. Edelson and D. K. Hildebrand, Congestion tolls for Poisson queueing processes,, Econometrica, 43 (1975), 81. doi: 10.2307/1913415. Google Scholar

[4]

A. Economou and S. Kanta, Equillibrium balking strategies in the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696. doi: 10.1016/j.orl.2008.06.006. Google Scholar

[5]

A. Economou and S. Kanta, Optimal balking strategies and pricing for the single server Markovian queue with compartmented waiting space,, Queueing Systems, 59 (2008), 237. doi: 10.1007/s11134-008-9083-8. Google Scholar

[6]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues,, Operations Research, 59 (2011), 986. doi: 10.1287/opre.1100.0907. Google Scholar

[7]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous customers,, European Journal of Operational Research, 222 (2012), 278. doi: 10.1016/j.ejor.2012.05.026. Google Scholar

[8]

P. Guo and Q. Li, Strategic behavior and social optimization in partially-observable Markovian vacation queues,, Operations Research Letters, 41 (2013), 277. doi: 10.1016/j.orl.2013.02.005. Google Scholar

[9]

P. Guo and P. Zipkin, Analysis and comparison of queues with different levels of delay information,, Management Science, 53 (2007), 962. doi: 10.1287/mnsc.1060.0686. Google Scholar

[10]

R. Hassin and M. Haviv, Equilibrium Behavior in Queueing Systems: To Queue or Not to Queue,, Kluwer Academic Publishers, (2003). doi: 10.1007/978-1-4615-0359-0. Google Scholar

[11]

M. Haviv and Y. Kerner, On balking from an empty queue,, Queueing Systems, 55 (2007), 239. doi: 10.1007/s11134-007-9020-2. Google Scholar

[12]

Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue,, Games and Economic Behavior, 71 (2011), 521. doi: 10.1016/j.geb.2010.06.002. Google Scholar

[13]

L. Li, J. Wang and F. Zhang, Equilibrium customer strategies in Markovian queues with partial breakdowns,, Computers & Industrial Engineering, 66 (2013), 751. doi: 10.1016/j.cie.2013.09.023. Google Scholar

[14]

P. Naor, The regulation of queue size by levying tolls,, Econometrica, 37 (1969), 15. doi: 10.2307/1909200. Google Scholar

[15]

W. Stein, A. Rapoport, D. Seale, H. Zhang and R. Zwick, Batch queues with choice of arrivals: Equilibrium analysis and experimental study,, Games and Economic Behavior, 59 (2007), 345. doi: 10.1016/j.geb.2006.08.008. Google Scholar

[16]

W. Sun and N. Tian, Contrast of the equilibrium and socially optimal strategies in a queue with vacations,, Journal of Computational Information Systems, 4 (2008), 2167. Google Scholar

[17]

H. Takagi, Queueing Analysis-A Foundation of Performance Evaluation, Vol. 1: Vacation and Prioriry Systems, Part I,, North-Holland, (1991). Google Scholar

[18]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, Springer, (2006). Google Scholar

[19]

R. Tian and D. Yue, Optimal balking strategies in an Markvian queue with a single vacation,, Journal of Information and Computational Science, 9 (2012), 2827. Google Scholar

[20]

F. Zhang, J. Wang and B. Liu, Equilibrium joining probabilities in observable queues with general service and setup times,, Journal of Industrial and Management Optimization, 9 (2013), 901. doi: 10.3934/jimo.2013.9.901. Google Scholar

[21]

F. Zhang, J. Wang and B. Liu, Equilibrium balking strategies in Markovian queues with working vacations,, Applied Mathematical Modelling, 37 (2013), 8264. doi: 10.1016/j.apm.2013.03.049. Google Scholar

[22]

F. Zhang, J. Wang and B. Liu, On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations,, Journal of Industrial and Management Optimization, 8 (2012), 861. doi: 10.3934/jimo.2012.8.861. Google Scholar

[1]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[2]

Yuxue Li, Maozhu Jin, Peiyu Ren, Zhixue Liao. Research on the optimal initial shunt strategy of Jiuzhaigou based on the optimization model. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1239-1249. doi: 10.3934/dcdss.2015.8.1239

[3]

Siyu Liu, Xue Yang, Yingjie Bi, Yong Li. Dynamic behavior and optimal scheduling for mixed vaccination strategy with temporary immunity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1469-1483. doi: 10.3934/dcdsb.2018216

[4]

Ka Wo Lau, Yue Kuen Kwok. Optimal execution strategy of liquidation. Journal of Industrial & Management Optimization, 2006, 2 (2) : 135-144. doi: 10.3934/jimo.2006.2.135

[5]

Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial & Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625

[6]

Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial & Management Optimization, 2012, 8 (2) : 457-468. doi: 10.3934/jimo.2012.8.457

[7]

Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018188

[8]

Guibin Lu, Qiying Hu, Youying Zhou, Wuyi Yue. Optimal execution strategy with an endogenously determined sales period. Journal of Industrial & Management Optimization, 2005, 1 (3) : 289-304. doi: 10.3934/jimo.2005.1.289

[9]

Wai-Ki Ching, Tang Li, Sin-Man Choi, Issic K. C. Leung. A tandem queueing system with applications to pricing strategy. Journal of Industrial & Management Optimization, 2009, 5 (1) : 103-114. doi: 10.3934/jimo.2009.5.103

[10]

Yujing Wang, Changjun Yu, Kok Lay Teo. A new computational strategy for optimal control problem with a cost on changing control. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 339-364. doi: 10.3934/naco.2016016

[11]

Jingang Zhai, Guangmao Jiang, Jianxiong Ye. Optimal dilution strategy for a microbial continuous culture based on the biological robustness. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 59-69. doi: 10.3934/naco.2015.5.59

[12]

Lv Chen, Hailiang Yang. Optimal reinsurance and investment strategy with two piece utility function. Journal of Industrial & Management Optimization, 2017, 13 (2) : 737-755. doi: 10.3934/jimo.2016044

[13]

Gongpin Cheng, Lin Xu. Optimal size of business and dividend strategy in a nonlinear model with refinancing and liquidation value. Mathematical Control & Related Fields, 2017, 7 (1) : 1-19. doi: 10.3934/mcrf.2017001

[14]

Heman Shakeri, Faryad Darabi Sahneh, Caterina Scoglio, Pietro Poggi-Corradini, Victor M. Preciado. Optimal information dissemination strategy to promote preventive behaviors in multilayer epidemic networks. Mathematical Biosciences & Engineering, 2015, 12 (3) : 609-623. doi: 10.3934/mbe.2015.12.609

[15]

Jiaqin Wei, Danping Li, Yan Zeng. Robust optimal consumption-investment strategy with non-exponential discounting. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-24. doi: 10.3934/jimo.2018147

[16]

Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315

[17]

Dingjun Yao, Rongming Wang, Lin Xu. Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1235-1259. doi: 10.3934/jimo.2014.10.1235

[18]

Gongpin Cheng, Rongming Wang, Dingjun Yao. Optimal dividend and capital injection strategy with excess-of-loss reinsurance and transaction costs. Journal of Industrial & Management Optimization, 2018, 14 (1) : 371-395. doi: 10.3934/jimo.2017051

[19]

Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1599-1615. doi: 10.3934/jimo.2018113

[20]

Sanyi Tang, Lansun Chen. Modelling and analysis of integrated pest management strategy. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 759-768. doi: 10.3934/dcdsb.2004.4.759

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]