• Previous Article
    Performance analysis of buffers with train arrivals and correlated output interruptions
  • JIMO Home
  • This Issue
  • Next Article
    On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations
July  2015, 11(3): 807-828. doi: 10.3934/jimo.2015.11.807

Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing

1. 

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea

2. 

Department of Mathematical Sciences and Telecommunication Engineering Program, Korea Advanced Institute of Science and Technology, Daejeon

Received  September 2013 Revised  May 2014 Published  October 2014

In this paper, we consider a multi-channel cognitive radio network with multiple secondary users (SUs) and analyze the performance of users in the network. We assume primary users (PUs) adopt the automatic repeat request (ARQ) protocol at the medium access control layer. We have two main goals. Our first goal is to develop a cross-layer performance model of the cognitive radio network by considering the retransmission characteristics of the ARQ protocol and the interference between PUs and SUs due to imperfect channel sensing. Using the cross-layer performance model we analyze the throughput performance of SUs and the delay performance of PUs.
    Our second goal is to propose an optimal channel sensing method that maximizes the throughput performance of SUs while a given delay requirement of PUs is guaranteed. To this end, using our cross-layer performance model, we formulate an optimization problem and solve it to get an optimal channel sensing method that satisfies the design objectives. Numerical and simulation results are provided to validate our analysis and to investigate the performance of the optimal channel sensing method.
Citation: Jae Deok Kim, Ganguk Hwang. Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing. Journal of Industrial & Management Optimization, 2015, 11 (3) : 807-828. doi: 10.3934/jimo.2015.11.807
References:
[1]

S. Akin and M. C. Gursoy, Effective Capacity Analysis of Cognitive Radio Channels for Quality of Service Provisioning,, IEEE Trans. on Wireless Comm., 9 (2010), 3354. doi: 10.1109/TWC.2010.092410.090751. Google Scholar

[2]

I. F. Akyildiz, B. F. Lo and R. Balakrishnan, Cooperative spectrum sensing in cognitive radio networks: A survey,, Physical Communication, 4 (2011), 40. doi: 10.1016/j.phycom.2010.12.003. Google Scholar

[3]

C-S. Chang, Performance guarantees in communication networks,, Springer, (2000). Google Scholar

[4]

C. Cormio and K. R. Chowdhury, A Survey on MAC Protocols for Cognitive Radio Networks,, Ad Hoc Networks, 7 (2009), 1315. doi: 10.1016/j.adhoc.2009.01.002. Google Scholar

[5]

F. F. Digham, M-S. Alouini and M. K. Simon, On the energy detection of unknown signals over fading channels,, IEEE Tran. on Comm., 55 (2007), 21. doi: 10.1109/TCOMM.2006.887483. Google Scholar

[6]

A. A. El-Sherif and K. J. Ray Liu, Joint design of spectrum sensing and channel access in cognitive radio networks,, IEEE Trans. Wireless Comm., 10 (2011), 1743. doi: 10.1109/TWC.2011.032411.100131. Google Scholar

[7]

Federal Communications Commission, Spectrum Policy Task Force,, Rep. ET Docket No. 02-135, (2002), 02. Google Scholar

[8]

Federal Communications Commission, Notice of Proposed Rule Making and Order,, Rep. ET Docket No. 02-222, (2003), 02. Google Scholar

[9]

G. U. Hwang and S. Roy, Design and analysis of optimal random access policies in cognitive radio networks,, IEEE Transactions on Comm., 60 (2012), 121. doi: 10.1109/TCOMM.2011.112311.100702. Google Scholar

[10]

S. C. Jha, M. M. Rashod and V. K. Bhargava, Medium access control in distributed cognitive radio networks,, IEEE Wireless Comm. Mag., 18 (2011), 41. doi: 10.1109/MWC.2011.5999763. Google Scholar

[11]

S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory,, Prentice-Hall, (1998). Google Scholar

[12]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Models,, SIAM, (1999). doi: 10.1137/1.9780898719734. Google Scholar

[13]

W-Y. Lee and I. F. Akyildiz, Optimal Spectrum Sensing Framework for Cognitive Radio Networks,, IEEE Trans. on Wireless Comm., 7 (2008), 3845. doi: 10.1109/T-WC.2008.070391. Google Scholar

[14]

X. Li, Q. Zhao, X. Guan and L. Tong, Optimal cognitive access of markovian channels under tight collision constraints,, IEEE J. Selected Areas in Comm., 29 (2010), 1. doi: 10.1109/ICC.2010.5502055. Google Scholar

[15]

Y-C. Liang, Y. Zeng, E. C. Y. Peh and A. T. Hoang, Sensing-throughput tradeoff for cognitive radio networks,, IEEE Transactions on Wireless Comm., 7 (2008), 5330. doi: 10.1109/TWC.2008.060869. Google Scholar

[16]

S-Y. Lien, C-C. Tseng and K-C. Chen, Carrier sensing based multiple access protocols for cognitive radio networks,, Proc. IEEE ICC, (2008), 3208. doi: 10.1109/ICC.2008.604. Google Scholar

[17]

L. Ma, X. Han and C-C. Shen, Dynamic open spectrum sharing for wireless ad hoc networks,, Proc. IEEE DySPAN, (2005), 203. doi: 10.1109/DYSPAN.2005.1542636. Google Scholar

[18]

J. Mitola and G. Q. Maguire, Cognitive radio: Making software radios more personal,, IEEE Pers. Commun., 6 (1999), 13. doi: 10.1109/98.788210. Google Scholar

[19]

E. C. Y. Peh, Y-C. Liang, Y. L. Guan and Y. Zeng, Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view,, IEEE Trans. on Vech. Tech., 58 (2009), 5294. doi: 10.1109/TVT.2009.2028030. Google Scholar

[20]

S. M. Ross, Stochastic Processes,, John Willey & Sons, (1996). Google Scholar

[21]

A. Singh, M. R. Bhatnagar and R. K. Mallik, Threshold optimization of finite sample based cognitive radio network,, NCC 2012, (2012), 1. doi: 10.1109/NCC.2012.6176816. Google Scholar

[22]

H. Su and X. Zhang, Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks,, Journal on Selected Areas in Comm., 26 (2008), 118. doi: 10.1109/JSAC.2008.080111. Google Scholar

[23]

S. Wang, J. Zhang and L. Tong, Delay analysis for cognitive radio networks with random access: A fluid flow view,, Proc. 2010 IEEE INFOCOM, (2010), 1. doi: 10.1109/INFCOM.2010.5461943. Google Scholar

[24]

A. Wyglinski, M. Nekovee and Y. T. Hou, Cognitive Radio Communications and Networks: Principles and Practice,, Elsevier, (2009). Google Scholar

[25]

M. Xu, and H. Li and X. Gan, Energy efficient sequential sensing for wideband multi-channel cognitive network,, Proc. IEEE ICC, (2011), 1. doi: 10.1109/icc.2011.5962519. Google Scholar

[26]

T. Yücek and H. Arslan, A survey of spectrum sensing algorithms for cognitive radio applications,, IEEE Comm. Surveys & Tutorials, 11 (2009), 116. doi: 10.1109/SURV.2009.090109. Google Scholar

[27]

Y. H. Zeng, Y.-C. Liang, A. T. Hoang and R. Zhang, A review on spectrum sensing for cognitive radio: Challenges and solutions,, EURASIP J. Advances Signal Process, 2010 (2010). doi: 10.1155/2010/381465. Google Scholar

[28]

Q. Zhao, L. Tong, A. Swami and Y. Chen, Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework,, IEEE Journal on Selected Areas in Comm., 25 (2007), 589. doi: 10.1109/JSAC.2007.070409. Google Scholar

[29]

, Standard for Wireless Regional Area Networks (WRAN) - Specific requirements - Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and procedures for operation in the TV Bands,, The Institute of Electrical and Electronics Engineering, (). Google Scholar

show all references

References:
[1]

S. Akin and M. C. Gursoy, Effective Capacity Analysis of Cognitive Radio Channels for Quality of Service Provisioning,, IEEE Trans. on Wireless Comm., 9 (2010), 3354. doi: 10.1109/TWC.2010.092410.090751. Google Scholar

[2]

I. F. Akyildiz, B. F. Lo and R. Balakrishnan, Cooperative spectrum sensing in cognitive radio networks: A survey,, Physical Communication, 4 (2011), 40. doi: 10.1016/j.phycom.2010.12.003. Google Scholar

[3]

C-S. Chang, Performance guarantees in communication networks,, Springer, (2000). Google Scholar

[4]

C. Cormio and K. R. Chowdhury, A Survey on MAC Protocols for Cognitive Radio Networks,, Ad Hoc Networks, 7 (2009), 1315. doi: 10.1016/j.adhoc.2009.01.002. Google Scholar

[5]

F. F. Digham, M-S. Alouini and M. K. Simon, On the energy detection of unknown signals over fading channels,, IEEE Tran. on Comm., 55 (2007), 21. doi: 10.1109/TCOMM.2006.887483. Google Scholar

[6]

A. A. El-Sherif and K. J. Ray Liu, Joint design of spectrum sensing and channel access in cognitive radio networks,, IEEE Trans. Wireless Comm., 10 (2011), 1743. doi: 10.1109/TWC.2011.032411.100131. Google Scholar

[7]

Federal Communications Commission, Spectrum Policy Task Force,, Rep. ET Docket No. 02-135, (2002), 02. Google Scholar

[8]

Federal Communications Commission, Notice of Proposed Rule Making and Order,, Rep. ET Docket No. 02-222, (2003), 02. Google Scholar

[9]

G. U. Hwang and S. Roy, Design and analysis of optimal random access policies in cognitive radio networks,, IEEE Transactions on Comm., 60 (2012), 121. doi: 10.1109/TCOMM.2011.112311.100702. Google Scholar

[10]

S. C. Jha, M. M. Rashod and V. K. Bhargava, Medium access control in distributed cognitive radio networks,, IEEE Wireless Comm. Mag., 18 (2011), 41. doi: 10.1109/MWC.2011.5999763. Google Scholar

[11]

S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory,, Prentice-Hall, (1998). Google Scholar

[12]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Models,, SIAM, (1999). doi: 10.1137/1.9780898719734. Google Scholar

[13]

W-Y. Lee and I. F. Akyildiz, Optimal Spectrum Sensing Framework for Cognitive Radio Networks,, IEEE Trans. on Wireless Comm., 7 (2008), 3845. doi: 10.1109/T-WC.2008.070391. Google Scholar

[14]

X. Li, Q. Zhao, X. Guan and L. Tong, Optimal cognitive access of markovian channels under tight collision constraints,, IEEE J. Selected Areas in Comm., 29 (2010), 1. doi: 10.1109/ICC.2010.5502055. Google Scholar

[15]

Y-C. Liang, Y. Zeng, E. C. Y. Peh and A. T. Hoang, Sensing-throughput tradeoff for cognitive radio networks,, IEEE Transactions on Wireless Comm., 7 (2008), 5330. doi: 10.1109/TWC.2008.060869. Google Scholar

[16]

S-Y. Lien, C-C. Tseng and K-C. Chen, Carrier sensing based multiple access protocols for cognitive radio networks,, Proc. IEEE ICC, (2008), 3208. doi: 10.1109/ICC.2008.604. Google Scholar

[17]

L. Ma, X. Han and C-C. Shen, Dynamic open spectrum sharing for wireless ad hoc networks,, Proc. IEEE DySPAN, (2005), 203. doi: 10.1109/DYSPAN.2005.1542636. Google Scholar

[18]

J. Mitola and G. Q. Maguire, Cognitive radio: Making software radios more personal,, IEEE Pers. Commun., 6 (1999), 13. doi: 10.1109/98.788210. Google Scholar

[19]

E. C. Y. Peh, Y-C. Liang, Y. L. Guan and Y. Zeng, Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view,, IEEE Trans. on Vech. Tech., 58 (2009), 5294. doi: 10.1109/TVT.2009.2028030. Google Scholar

[20]

S. M. Ross, Stochastic Processes,, John Willey & Sons, (1996). Google Scholar

[21]

A. Singh, M. R. Bhatnagar and R. K. Mallik, Threshold optimization of finite sample based cognitive radio network,, NCC 2012, (2012), 1. doi: 10.1109/NCC.2012.6176816. Google Scholar

[22]

H. Su and X. Zhang, Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks,, Journal on Selected Areas in Comm., 26 (2008), 118. doi: 10.1109/JSAC.2008.080111. Google Scholar

[23]

S. Wang, J. Zhang and L. Tong, Delay analysis for cognitive radio networks with random access: A fluid flow view,, Proc. 2010 IEEE INFOCOM, (2010), 1. doi: 10.1109/INFCOM.2010.5461943. Google Scholar

[24]

A. Wyglinski, M. Nekovee and Y. T. Hou, Cognitive Radio Communications and Networks: Principles and Practice,, Elsevier, (2009). Google Scholar

[25]

M. Xu, and H. Li and X. Gan, Energy efficient sequential sensing for wideband multi-channel cognitive network,, Proc. IEEE ICC, (2011), 1. doi: 10.1109/icc.2011.5962519. Google Scholar

[26]

T. Yücek and H. Arslan, A survey of spectrum sensing algorithms for cognitive radio applications,, IEEE Comm. Surveys & Tutorials, 11 (2009), 116. doi: 10.1109/SURV.2009.090109. Google Scholar

[27]

Y. H. Zeng, Y.-C. Liang, A. T. Hoang and R. Zhang, A review on spectrum sensing for cognitive radio: Challenges and solutions,, EURASIP J. Advances Signal Process, 2010 (2010). doi: 10.1155/2010/381465. Google Scholar

[28]

Q. Zhao, L. Tong, A. Swami and Y. Chen, Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework,, IEEE Journal on Selected Areas in Comm., 25 (2007), 589. doi: 10.1109/JSAC.2007.070409. Google Scholar

[29]

, Standard for Wireless Regional Area Networks (WRAN) - Specific requirements - Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and procedures for operation in the TV Bands,, The Institute of Electrical and Electronics Engineering, (). Google Scholar

[1]

Haruki Katayama, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Effect of spectrum sensing overhead on performance for cognitive radio networks with channel bonding. Journal of Industrial & Management Optimization, 2014, 10 (1) : 21-40. doi: 10.3934/jimo.2014.10.21

[2]

Shengzhu Jin, Bong Dae Choi, Doo Seop Eom. Performance analysis of binary exponential backoff MAC protocol for cognitive radio in the IEEE 802.16e/m network. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1483-1494. doi: 10.3934/jimo.2017003

[3]

Yuan Zhao, Wuyi Yue. Performance analysis and optimization for cognitive radio networks with a finite primary user buffer and a probability returning scheme. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018195

[4]

Yuan Zhao, Wuyi Yue. Cognitive radio networks with multiple secondary users under two kinds of priority schemes: Performance comparison and optimization. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1449-1466. doi: 10.3934/jimo.2017001

[5]

Yuan Zhao, Wuyi Yue. Performance evaluation and optimization of cognitive radio networks with adjustable access control for multiple secondary users. Journal of Industrial & Management Optimization, 2019, 15 (1) : 1-14. doi: 10.3934/jimo.2018029

[6]

Hong Il Cho, Myungwoo Lee, Ganguk Hwang. A cross-layer relay selection scheme of a wireless network with multiple relays under Rayleigh fading. Journal of Industrial & Management Optimization, 2014, 10 (1) : 1-19. doi: 10.3934/jimo.2014.10.1

[7]

Hyeon Je Cho, Ganguk Hwang. Optimal design for dynamic spectrum access in cognitive radio networks under Rayleigh fading. Journal of Industrial & Management Optimization, 2012, 8 (4) : 821-840. doi: 10.3934/jimo.2012.8.821

[8]

Shunfu Jin, Wuyi Yue, Zsolt Saffer. Analysis and optimization of a gated polling based spectrum allocation mechanism in cognitive radio networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 687-702. doi: 10.3934/jimo.2016.12.687

[9]

Jianping Liu, Shunfu Jin. An imperfect sensing-based channel reservation strategy in CRNs and its performance evaluation. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2018197

[10]

Seunghee Lee, Ganguk Hwang. A new analytical model for optimized cognitive radio networks based on stochastic geometry. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1883-1899. doi: 10.3934/jimo.2017023

[11]

Jae Man Park, Gang Uk Hwang, Boo Geum Jung. Design and analysis of an adaptive guard channel based CAC scheme in a 3G-WLAN integrated network. Journal of Industrial & Management Optimization, 2010, 6 (3) : 621-639. doi: 10.3934/jimo.2010.6.621

[12]

Sara D. Cardell, Joan-Josep Climent. An approach to the performance of SPC product codes on the erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 11-28. doi: 10.3934/amc.2016.10.11

[13]

Min-Fan He, Li-Ning Xing, Wen Li, Shang Xiang, Xu Tan. Double layer programming model to the scheduling of remote sensing data processing tasks. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1515-1526. doi: 10.3934/dcdss.2019104

[14]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019111

[15]

Djano Kandaswamy, Thierry Blu, Dimitri Van De Ville. Analytic sensing for multi-layer spherical models with application to EEG source imaging. Inverse Problems & Imaging, 2013, 7 (4) : 1251-1270. doi: 10.3934/ipi.2013.7.1251

[16]

N. D. Alikakos, P. W. Bates, J. W. Cahn, P. C. Fife, G. Fusco, G. B. Tanoglu. Analysis of a corner layer problem in anisotropic interfaces. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 237-255. doi: 10.3934/dcdsb.2006.6.237

[17]

Shunfu Jin, Wuyi Yue, Shiying Ge. Equilibrium analysis of an opportunistic spectrum access mechanism with imperfect sensing results. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1255-1271. doi: 10.3934/jimo.2016071

[18]

Didier Georges. Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks & Heterogeneous Media, 2009, 4 (2) : 267-285. doi: 10.3934/nhm.2009.4.267

[19]

Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613

[20]

Monique Chyba, Thomas Haberkorn, Ryan N. Smith, George Wilkens. A geometric analysis of trajectory design for underwater vehicles. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 233-262. doi: 10.3934/dcdsb.2009.11.233

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]