• Previous Article
    A novel active DRX mechanism in LTE technology and its performance evaluation
  • JIMO Home
  • This Issue
  • Next Article
    Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing
July  2015, 11(3): 829-848. doi: 10.3934/jimo.2015.11.829

Performance analysis of buffers with train arrivals and correlated output interruptions

1. 

SMACS Research Group, TELIN Department, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Gent

2. 

Supply Networks and Logistics Research Center, Department of Industrial Management, Ghent University, Technologiepark 903, B-9052 Zwijnaarde

Received  September 2013 Revised  May 2014 Published  October 2014

In this paper, we study a discrete-time buffer system with a time-correlated packet arrival process and one unreliable output line. In particular, packets arrive to the buffer in the form of variable-length packet trains at a fixed rate of exactly one packet per slot. The packet trains are assumed to have a geometric length, such that each packet has a fixed probability of being the last of its corresponding train. The output line is governed by a Markovian process, such that the probability that the line is available during a slot depends on the state of the underlying $J$-state Markov process during that slot.
    First, we provide a general analysis of the state of the buffer system based on a matrix generating functions approach. This also leads to an expression for the mean buffer content. Additionally, we take a closer look at the distributions of the packet delay and the train delay. In order to make matters more concrete, we next present a detailed and explicit analysis of the buffer system in case the output line is governed by a $2$-state Markov process. Some numerical examples help to visualise the influence of the various model parameters.
Citation: Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel, Sabine Wittevrongel. Performance analysis of buffers with train arrivals and correlated output interruptions. Journal of Industrial & Management Optimization, 2015, 11 (3) : 829-848. doi: 10.3934/jimo.2015.11.829
References:
[1]

M. M. Ali, X. Zhang and J. F. Hayes, A performance analysis of a discrete-time queueing system with server interruption for modeling wireless ATM multiplexer,, Performance Evaluation, 51 (2003), 1. Google Scholar

[2]

E. Altman and A. Jean-Marie, The distribution of delays of dispersed messages in an $M/M/1$ queue,, Proceedings of IEEE INFOCOM '95 (Boston, (1995), 2. doi: 10.1109/INFCOM.1995.515893. Google Scholar

[3]

C. Blondia and O. Casals, Statistical multiplexing of VBR sources: A matrix-analytic approach,, Performance Evaluation, 16 (1992), 5. doi: 10.1016/0166-5316(92)90064-N. Google Scholar

[4]

H. Bruneel, On the behavior of buffers with random server interruptions,, Performance Evaluation, 3 (1983), 165. doi: 10.1016/0166-5316(83)90001-9. Google Scholar

[5]

H. Bruneel, Buffers with stochastic output interruptions,, Electronics Letters, 19 (1983), 735. doi: 10.1049/el:19830501. Google Scholar

[6]

H. Bruneel, Packet delay and queue length for statistical multiplexers with low-speed access lines,, Computer Networks and ISDN Systems, 25 (1993), 1267. doi: 10.1016/0169-7552(93)90018-Y. Google Scholar

[7]

H. Bruneel, Calculation of message delays and message waiting times in switching elements with slow access lines,, IEEE Transactions on Communications, 42 (1994), 255. doi: 10.1109/TCOMM.1994.577026. Google Scholar

[8]

B. D. Choi, D. I. Choi, Y. Lee and D. K. Sung, Priority queueing system with fixed-length packet-train arrivals,, IEE Proceedings-Communications, 145 (1998), 331. doi: 10.1049/ip-com:19982288. Google Scholar

[9]

A. Chydzinski, Time to reach buffer capacity in a BMAP queue,, Stochastic Models, 23 (2007), 195. doi: 10.1080/15326340701300746. Google Scholar

[10]

I. Cidon, A. Khamisy and M. Sidi, On queueing delays of dispersed messages,, Queueing Systems, 15 (1994), 325. doi: 10.1007/BF01189244. Google Scholar

[11]

I. Cidon, A. Khamisy and M. Sidi, Delay, jitter and threshold crossing in ATM systems with dispersed messages,, Performance Evaluation, 29 (1997), 85. doi: 10.1016/S0166-5316(96)00006-5. Google Scholar

[12]

J. Daigle, Message delays at packet-switching nodes serving multiple classes,, IEEE Transactions on Communications, 38 (1990), 447. doi: 10.1109/26.52655. Google Scholar

[13]

M. Dowell and P. Jarrat, A modified regula falsi method for computing the root of an equation,, BIT Numerical Mathematics, 11 (1971), 168. Google Scholar

[14]

K. Elsayed and H. Perros, The superposition of discrete-time Markov renewal processes with an application to statistical multiplexing of bursty traffic sources,, Applied Mathematics and Computation, 115 (2000), 43. doi: 10.1016/S0096-3003(99)00134-4. Google Scholar

[15]

B. Feyaerts, S. De Vuyst, H. Bruneel and S. Wittevrongel, Analysis of discrete-time buffers with heterogeneous session-based arrivals and general session lengths,, Computers and Operations Research, 39 (2012), 2905. doi: 10.1016/j.cor.2011.11.023. Google Scholar

[16]

D. Fiems and H. Bruneel, A note on the discretization of Little's result,, Operations Research Letters, 30 (2002), 17. doi: 10.1016/S0167-6377(01)00112-2. Google Scholar

[17]

D. Fiems, B. Steyaert and H. Bruneel, Discrete-time queues with generally distributed service times and renewal-type server interruptions,, Performance Evaluation, 55 (2004), 277. doi: 10.1016/j.peva.2003.08.004. Google Scholar

[18]

H. R. Gail, S. L. Hantler, A. G. Konheim and B. A. Taylor, An analysis of a class of telecommunication models,, Performance Evaluation, 21 (1994), 151. doi: 10.1016/0166-5316(94)90032-9. Google Scholar

[19]

H. R. Gail, S. L. Hantler and B. A. Taylor, Spectral analysis of $M/G/1$ and $G/M/1$ type Markov chains,, Advances in Applied Probability, 28 (1996), 114. doi: 10.2307/1427915. Google Scholar

[20]

L. Hoflack, S. De Vuyst, S. Wittevrongel and H. Bruneel, Analytics traffic model of a web server,, Electronics Letters, 44 (2008), 61. doi: 10.1049/el:20083020. Google Scholar

[21]

L. Hoflack, S. De Vuyst, S. Wittevrongel and H. Bruneel, Discrete-time buffer systems with session-based arrival streams,, Performance Evaluation, 67 (2010), 432. doi: 10.1016/j.peva.2009.12.007. Google Scholar

[22]

G. U. Hwang and B. D. Choi, Closed-form expressions on the geometric tail behavior of statistical multiplexers with heterogeneous traffic,, IEEE Transactions on Communications, 46 (1998), 1575. Google Scholar

[23]

F. Ishizaki, Decomposition property in a discrete-time queue with multiple input streams and service interruptions,, Journal of Applied Probability, 41 (2004), 524. doi: 10.1239/jap/1082999083. Google Scholar

[24]

F. Kamoun, Performance analysis of a discrete-time queueing system with a correlated train arrival process,, Performance Evaluation, 63 (2006), 315. Google Scholar

[25]

F. Kamoun, Performance analysis of a non-preemptive priority queuing system subjected to a correlated Markovian interruption process,, Computers & Operations Research, 35 (2008), 3969. doi: 10.1016/j.cor.2007.06.001. Google Scholar

[26]

F. Kamoun, Performance evaluation of a queueing system with correlated packet-trains and server interruption,, Telecommunication Systems, 41 (2009), 267. Google Scholar

[27]

K. Laevens and H. Bruneel, Delay analysis for discrete-time queueing systems with multiple randomly interrupted servers,, European Journal of Operations Research, 85 (1995), 161. doi: 10.1016/0377-2217(93)E0148-Q. Google Scholar

[28]

D. S. Lee, Analysis of a single server queue with semi-Markovian service interruption,, Queueing Systems, 27 (1997), 153. doi: 10.1023/A:1019162014745. Google Scholar

[29]

D. M. Lucantoni, K. S. Meier-Hellstern and M. Neuts, A single-server queue with server vacations and a class of non-renewal arrival processes,, Advances in Applied Probability, 22 (1990), 676. doi: 10.2307/1427464. Google Scholar

[30]

D. M. Lucantoni, New results on the single server queue with a batch Markovian arrival process,, Stochastic Models, 7 (1991), 1. doi: 10.1080/15326349108807174. Google Scholar

[31]

H. Masuyama and T. Takine, Stationary queue length in a FIFO single server queue with service interruptions and multiple batch Markovian arrival streams,, Journal of the Operations Research Society of Japan, 46 (2003), 319. Google Scholar

[32]

C. D. Meyer, Matrix Analysis and Applied Linear Algebra,, SIAM, (2000). doi: 10.1137/1.9780898719512. Google Scholar

[33]

I. Mitrani, Modelling of Computer and Communication Systems,, Cambridge University Press, (1987). Google Scholar

[34]

A. Mokhtar and M. Azizoglu, Analysis of state-dependent probabilistic server interruptions in discrete-time queues,, IEEE Communications Letters, 8 (2004), 544. doi: 10.1109/LCOMM.2004.833827. Google Scholar

[35]

M. Neuts, Structured Stochastic Matrices of $M/G/1$ type and Their Applications,, New York: Marcel Dekker, (1989). Google Scholar

[36]

K. Sohraby, On the theory of general ON-OFF sources with applications in high-speed networks,, Proceedings of IEEE INFOCOM '93 (San Francisco, (1993), 401. doi: 10.1109/INFCOM.1993.253336. Google Scholar

[37]

J. Walraevens, S. Wittevrongel and H. Bruneel, A discrete-time priority queue with train arrivals,, Stochastic Models, 23 (2007), 489. doi: 10.1080/15326340701471158. Google Scholar

[38]

S. Wittevrongel and H. Bruneel, Correlation effects in ATM queues due to data format conversions,, Performance Evaluation, 32 (1998), 35. doi: 10.1016/S0166-5316(97)00015-1. Google Scholar

[39]

S. Wittevrongel, Discrete-time buffers with variable-length train arrivals,, Electronics Letters, 34 (1998), 1719. doi: 10.1049/el:19981248. Google Scholar

[40]

S. Wittevrongel, S. De Vuyst and H. Bruneel, Analysis of discrete-time buffers with general session-based arrivals,, 16th International conference on analytical and stochastic modelling techniques and applications (ASMTA) Madrid, 5513 (2009), 189. doi: 10.1007/978-3-642-02205-0_14. Google Scholar

[41]

Y. Xiong, H. Bruneel, Buffer behavior of statistical multiplexers with correlated train arrivals,, International Journal of Electronics and Communications, 51 (1997), 178. Google Scholar

show all references

References:
[1]

M. M. Ali, X. Zhang and J. F. Hayes, A performance analysis of a discrete-time queueing system with server interruption for modeling wireless ATM multiplexer,, Performance Evaluation, 51 (2003), 1. Google Scholar

[2]

E. Altman and A. Jean-Marie, The distribution of delays of dispersed messages in an $M/M/1$ queue,, Proceedings of IEEE INFOCOM '95 (Boston, (1995), 2. doi: 10.1109/INFCOM.1995.515893. Google Scholar

[3]

C. Blondia and O. Casals, Statistical multiplexing of VBR sources: A matrix-analytic approach,, Performance Evaluation, 16 (1992), 5. doi: 10.1016/0166-5316(92)90064-N. Google Scholar

[4]

H. Bruneel, On the behavior of buffers with random server interruptions,, Performance Evaluation, 3 (1983), 165. doi: 10.1016/0166-5316(83)90001-9. Google Scholar

[5]

H. Bruneel, Buffers with stochastic output interruptions,, Electronics Letters, 19 (1983), 735. doi: 10.1049/el:19830501. Google Scholar

[6]

H. Bruneel, Packet delay and queue length for statistical multiplexers with low-speed access lines,, Computer Networks and ISDN Systems, 25 (1993), 1267. doi: 10.1016/0169-7552(93)90018-Y. Google Scholar

[7]

H. Bruneel, Calculation of message delays and message waiting times in switching elements with slow access lines,, IEEE Transactions on Communications, 42 (1994), 255. doi: 10.1109/TCOMM.1994.577026. Google Scholar

[8]

B. D. Choi, D. I. Choi, Y. Lee and D. K. Sung, Priority queueing system with fixed-length packet-train arrivals,, IEE Proceedings-Communications, 145 (1998), 331. doi: 10.1049/ip-com:19982288. Google Scholar

[9]

A. Chydzinski, Time to reach buffer capacity in a BMAP queue,, Stochastic Models, 23 (2007), 195. doi: 10.1080/15326340701300746. Google Scholar

[10]

I. Cidon, A. Khamisy and M. Sidi, On queueing delays of dispersed messages,, Queueing Systems, 15 (1994), 325. doi: 10.1007/BF01189244. Google Scholar

[11]

I. Cidon, A. Khamisy and M. Sidi, Delay, jitter and threshold crossing in ATM systems with dispersed messages,, Performance Evaluation, 29 (1997), 85. doi: 10.1016/S0166-5316(96)00006-5. Google Scholar

[12]

J. Daigle, Message delays at packet-switching nodes serving multiple classes,, IEEE Transactions on Communications, 38 (1990), 447. doi: 10.1109/26.52655. Google Scholar

[13]

M. Dowell and P. Jarrat, A modified regula falsi method for computing the root of an equation,, BIT Numerical Mathematics, 11 (1971), 168. Google Scholar

[14]

K. Elsayed and H. Perros, The superposition of discrete-time Markov renewal processes with an application to statistical multiplexing of bursty traffic sources,, Applied Mathematics and Computation, 115 (2000), 43. doi: 10.1016/S0096-3003(99)00134-4. Google Scholar

[15]

B. Feyaerts, S. De Vuyst, H. Bruneel and S. Wittevrongel, Analysis of discrete-time buffers with heterogeneous session-based arrivals and general session lengths,, Computers and Operations Research, 39 (2012), 2905. doi: 10.1016/j.cor.2011.11.023. Google Scholar

[16]

D. Fiems and H. Bruneel, A note on the discretization of Little's result,, Operations Research Letters, 30 (2002), 17. doi: 10.1016/S0167-6377(01)00112-2. Google Scholar

[17]

D. Fiems, B. Steyaert and H. Bruneel, Discrete-time queues with generally distributed service times and renewal-type server interruptions,, Performance Evaluation, 55 (2004), 277. doi: 10.1016/j.peva.2003.08.004. Google Scholar

[18]

H. R. Gail, S. L. Hantler, A. G. Konheim and B. A. Taylor, An analysis of a class of telecommunication models,, Performance Evaluation, 21 (1994), 151. doi: 10.1016/0166-5316(94)90032-9. Google Scholar

[19]

H. R. Gail, S. L. Hantler and B. A. Taylor, Spectral analysis of $M/G/1$ and $G/M/1$ type Markov chains,, Advances in Applied Probability, 28 (1996), 114. doi: 10.2307/1427915. Google Scholar

[20]

L. Hoflack, S. De Vuyst, S. Wittevrongel and H. Bruneel, Analytics traffic model of a web server,, Electronics Letters, 44 (2008), 61. doi: 10.1049/el:20083020. Google Scholar

[21]

L. Hoflack, S. De Vuyst, S. Wittevrongel and H. Bruneel, Discrete-time buffer systems with session-based arrival streams,, Performance Evaluation, 67 (2010), 432. doi: 10.1016/j.peva.2009.12.007. Google Scholar

[22]

G. U. Hwang and B. D. Choi, Closed-form expressions on the geometric tail behavior of statistical multiplexers with heterogeneous traffic,, IEEE Transactions on Communications, 46 (1998), 1575. Google Scholar

[23]

F. Ishizaki, Decomposition property in a discrete-time queue with multiple input streams and service interruptions,, Journal of Applied Probability, 41 (2004), 524. doi: 10.1239/jap/1082999083. Google Scholar

[24]

F. Kamoun, Performance analysis of a discrete-time queueing system with a correlated train arrival process,, Performance Evaluation, 63 (2006), 315. Google Scholar

[25]

F. Kamoun, Performance analysis of a non-preemptive priority queuing system subjected to a correlated Markovian interruption process,, Computers & Operations Research, 35 (2008), 3969. doi: 10.1016/j.cor.2007.06.001. Google Scholar

[26]

F. Kamoun, Performance evaluation of a queueing system with correlated packet-trains and server interruption,, Telecommunication Systems, 41 (2009), 267. Google Scholar

[27]

K. Laevens and H. Bruneel, Delay analysis for discrete-time queueing systems with multiple randomly interrupted servers,, European Journal of Operations Research, 85 (1995), 161. doi: 10.1016/0377-2217(93)E0148-Q. Google Scholar

[28]

D. S. Lee, Analysis of a single server queue with semi-Markovian service interruption,, Queueing Systems, 27 (1997), 153. doi: 10.1023/A:1019162014745. Google Scholar

[29]

D. M. Lucantoni, K. S. Meier-Hellstern and M. Neuts, A single-server queue with server vacations and a class of non-renewal arrival processes,, Advances in Applied Probability, 22 (1990), 676. doi: 10.2307/1427464. Google Scholar

[30]

D. M. Lucantoni, New results on the single server queue with a batch Markovian arrival process,, Stochastic Models, 7 (1991), 1. doi: 10.1080/15326349108807174. Google Scholar

[31]

H. Masuyama and T. Takine, Stationary queue length in a FIFO single server queue with service interruptions and multiple batch Markovian arrival streams,, Journal of the Operations Research Society of Japan, 46 (2003), 319. Google Scholar

[32]

C. D. Meyer, Matrix Analysis and Applied Linear Algebra,, SIAM, (2000). doi: 10.1137/1.9780898719512. Google Scholar

[33]

I. Mitrani, Modelling of Computer and Communication Systems,, Cambridge University Press, (1987). Google Scholar

[34]

A. Mokhtar and M. Azizoglu, Analysis of state-dependent probabilistic server interruptions in discrete-time queues,, IEEE Communications Letters, 8 (2004), 544. doi: 10.1109/LCOMM.2004.833827. Google Scholar

[35]

M. Neuts, Structured Stochastic Matrices of $M/G/1$ type and Their Applications,, New York: Marcel Dekker, (1989). Google Scholar

[36]

K. Sohraby, On the theory of general ON-OFF sources with applications in high-speed networks,, Proceedings of IEEE INFOCOM '93 (San Francisco, (1993), 401. doi: 10.1109/INFCOM.1993.253336. Google Scholar

[37]

J. Walraevens, S. Wittevrongel and H. Bruneel, A discrete-time priority queue with train arrivals,, Stochastic Models, 23 (2007), 489. doi: 10.1080/15326340701471158. Google Scholar

[38]

S. Wittevrongel and H. Bruneel, Correlation effects in ATM queues due to data format conversions,, Performance Evaluation, 32 (1998), 35. doi: 10.1016/S0166-5316(97)00015-1. Google Scholar

[39]

S. Wittevrongel, Discrete-time buffers with variable-length train arrivals,, Electronics Letters, 34 (1998), 1719. doi: 10.1049/el:19981248. Google Scholar

[40]

S. Wittevrongel, S. De Vuyst and H. Bruneel, Analysis of discrete-time buffers with general session-based arrivals,, 16th International conference on analytical and stochastic modelling techniques and applications (ASMTA) Madrid, 5513 (2009), 189. doi: 10.1007/978-3-642-02205-0_14. Google Scholar

[41]

Y. Xiong, H. Bruneel, Buffer behavior of statistical multiplexers with correlated train arrivals,, International Journal of Electronics and Communications, 51 (1997), 178. Google Scholar

[1]

Tuan Phung-Duc, Wouter Rogiest, Sabine Wittevrongel. Single server retrial queues with speed scaling: Analysis and performance evaluation. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1927-1943. doi: 10.3934/jimo.2017025

[2]

Zhanyou Ma, Wuyi Yue, Xiaoli Su. Performance analysis of a Geom/Geom/1 queueing system with variable input probability. Journal of Industrial & Management Optimization, 2011, 7 (3) : 641-653. doi: 10.3934/jimo.2011.7.641

[3]

Wai-Ki Ching, Sin-Man Choi, Min Huang. Optimal service capacity in a multiple-server queueing system: A game theory approach. Journal of Industrial & Management Optimization, 2010, 6 (1) : 73-102. doi: 10.3934/jimo.2010.6.73

[4]

Sin-Man Choi, Ximin Huang, Wai-Ki Ching. Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment. Journal of Industrial & Management Optimization, 2012, 8 (2) : 299-323. doi: 10.3934/jimo.2012.8.299

[5]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[6]

Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial & Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715

[7]

Dequan Yue, Wuyi Yue. Block-partitioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns. Journal of Industrial & Management Optimization, 2009, 5 (3) : 417-430. doi: 10.3934/jimo.2009.5.417

[8]

Gang Chen, Zaiming Liu, Jingchuan Zhang. Analysis of strategic customer behavior in fuzzy queueing systems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018157

[9]

Jinting Wang, Linfei Zhao, Feng Zhang. Analysis of the finite source retrial queues with server breakdowns and repairs. Journal of Industrial & Management Optimization, 2011, 7 (3) : 655-676. doi: 10.3934/jimo.2011.7.655

[10]

Lotfi Tadj, Zhe George Zhang, Chakib Tadj. A queueing analysis of multi-purpose production facility's operations. Journal of Industrial & Management Optimization, 2011, 7 (1) : 19-30. doi: 10.3934/jimo.2011.7.19

[11]

Yoshiaki Kawase, Shoji Kasahara. Priority queueing analysis of transaction-confirmation time for Bitcoin. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2018193

[12]

Zhanqiang Huo, Wuyi Yue, Naishuo Tian, Shunfu Jin. Performance evaluation for the sleep mode in the IEEE 802.16e based on a queueing model with close-down time and multiple vacations. Journal of Industrial & Management Optimization, 2009, 5 (3) : 511-524. doi: 10.3934/jimo.2009.5.511

[13]

Kyosuke Hashimoto, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Performance analysis of backup-task scheduling with deadline time in cloud computing. Journal of Industrial & Management Optimization, 2015, 11 (3) : 867-886. doi: 10.3934/jimo.2015.11.867

[14]

Tao Jiang, Liwei Liu. Analysis of a batch service multi-server polling system with dynamic service control. Journal of Industrial & Management Optimization, 2018, 14 (2) : 743-757. doi: 10.3934/jimo.2017073

[15]

Ahmed M. K. Tarabia. Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs. Journal of Industrial & Management Optimization, 2011, 7 (4) : 811-823. doi: 10.3934/jimo.2011.7.811

[16]

Dequan Yue, Wuyi Yue, Guoxi Zhao. Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states. Journal of Industrial & Management Optimization, 2016, 12 (2) : 653-666. doi: 10.3934/jimo.2016.12.653

[17]

Dequan Yue, Wuyi Yue, Zsolt Saffer, Xiaohong Chen. Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy. Journal of Industrial & Management Optimization, 2014, 10 (1) : 89-112. doi: 10.3934/jimo.2014.10.89

[18]

Sho Nanao, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Queueing analysis of data block synchronization mechanism in peer-to-peer based video streaming system. Journal of Industrial & Management Optimization, 2011, 7 (3) : 699-716. doi: 10.3934/jimo.2011.7.699

[19]

Yuanyao Ding, Zudi Lu. How's the performance of the optimized portfolios by safety-first rules: Theory with empirical comparisons. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019076

[20]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks & Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (3)

[Back to Top]