Citation: |
[1] |
G. Auchmuty, Unconstrained variational principles for eigenvalues of real symmetric matrices, SIAM J. Math. Anal., 20 (1989), 1186-1207.doi: 10.1137/0520078. |
[2] |
J. Barzilai and J. M. Borwein, Two point step size gradient methods, IMA Journal of Numerical Analysis, 8 (1988), 141-148.doi: 10.1093/imanum/8.1.141. |
[3] |
Z. Bai, J. Dongarra, A. Ruhe and H. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.doi: 10.1137/1.9780898719581. |
[4] |
J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue, the United States of America: SIAM, 1985. |
[5] |
Y. H. Dai, On the nonmonotone line search, Journal of Optimization Theory and Applications, 112 (2002), 315-330.doi: 10.1023/A:1013653923062. |
[6] |
Y. H. Dai and R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming, Numerische Mathematik, 100 (2005), 21-47.doi: 10.1007/s00211-004-0569-y. |
[7] |
Y. H. Dai, W. W. Hager, K. Schittkowski and H. C. Zhang, The cycle Barzilai-Borwein method for unconstrained optimization, IMA Journal of Numerical Analysis, 26 (2006), 604-627.doi: 10.1093/imanum/drl006. |
[8] |
Y. H. Dai and C. X. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search, SIAM Journal on Optimization, 23 (2013), 296-320.doi: 10.1137/100813026. |
[9] |
Y. H. Dai and L. Z. Liao, $R$-linear convergence of the Barzilai and Borwein gradient method, IMA Journal of Numerical Analysis, 22 (2002), 1-10.doi: 10.1093/imanum/22.1.1. |
[10] |
Y. H. Dai and H. C. Zhang, Adaptive two-point stepsize gradient algorithm, Numerical Algorithms, 27 (2001), 377-385.doi: 10.1023/A:1013844413130. |
[11] |
T. A. Davis and Y. H. Hu, The University of Florida Sparse Matrix Collection, University of Florida, ACM Transactions on Mathematical Software, 2011.doi: 10.1145/2049662.2049663. |
[12] |
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming Series A, 91 (2002), 201-213.doi: 10.1007/s101070100263. |
[13] |
R. Fletcher, On the Barzilai-Borwein method, in Optimization and Control with Applications (eds. L.Q. Qi, K.L. Teo and X.Q. Yang), 96 (2005), 235-256.doi: 10.1007/0-387-24255-4_10. |
[14] |
L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for Newton's method, SIAM Journal on Numerical Analysis, 23 (1986), 707-716.doi: 10.1137/0723046. |
[15] |
G. H. Golub and C. F. Van Loan, Matrix computation, $3^{nd}$ edition, John Hopkins University Press, Baltimore, MD, 1996. |
[16] |
W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal on Optimization, 16 (2005), 170-192.doi: 10.1137/030601880. |
[17] |
B. Jiang and Y. H. Dai, Feasible Barzilai-Borwein-like methods for extreme symmetric eigenvalue problems, Optimization Methods and Software, 28 (2013), 756-784.doi: 10.1080/10556788.2012.656115. |
[18] |
M. Mongeau and M. Torki, Computing eigenelements of real symmetric matrices via optimization, Computational Optimization and Applications, 29 (2004), 263-287.doi: 10.1023/B:COAP.0000044182.33308.82. |
[19] |
M. Raydan, On the Barzilai and Borwein of steplength for gradient method, IMA Journal of Numerical Analysis, 13 (1993), 321-326.doi: 10.1093/imanum/13.3.321. |
[20] |
Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University: The Society of Industrial and Applied Mathematics, 2011.doi: 10.1137/1.9781611970739. |
[21] |
A. H. Sameh and J. A. Wisniewski, A trace minimization algorithm for the generalized eigenvalue problem computations, SIAM Journal on Numerical Analysis, 19 (1982), 1243-1259.doi: 10.1137/0719089. |
[22] |
P. L. Toint, Non-monotone trust-region algorithms for nonlinear optimization subject to convex constraints, Mathematical Programming, 77 (1997), 69-94.doi: 10.1007/BF02614518. |
[23] |
H. C. Zhang and W. W. Hager, PACBB: A projected adaptive CBB (PACBB) method for box constrained optimization, Nonconvex Optimization and Its Applications, 82 (2006), 387-392. |
[24] |
B. Zhou, L. Gao and Y. H. Dai, Gradient methods with adaptive step sizes, Computation Optimization and Applications, 35 (2006), 69-86.doi: 10.1007/s10589-006-6446-0. |