
Previous Article
A new approach for allocating fixed costs among decision making units
 JIMO Home
 This Issue

Next Article
A novel discriminant minimum class locality preserving canonical correlation analysis and its applications
Time consistent policy of multiperiod meanvariance problem in stochastic markets
1.  Department of Computing Science, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 
2.  Department of Computing Science, School of Mathematics and Statistics, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, China, China 
References:
[1] 
P. Artzner, F. Delbaen, J. M. Eber, D. Heath and H. Ku, Coherent multiperiod risk adjusted values and Bellman's principle,, Annals of Operations Research, 152 (2007), 5. doi: 10.1007/s1047900601326. 
[2] 
S. Basak and G. Chabakauri, Dynamic meanvariance asset allocation,, Review of Financial Studies, 23 (2010), 2970. doi: 10.1093/rfs/hhq028. 
[3] 
D. Bertsimas, G. J. Lauprete and A. Samarov, Shortfall as a risk measure: properties, optimization and app1ications,, Journal of Economic Dynamics and Control, 28 (2004), 1353. 
[4] 
T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochastic control problems,, Working Paper, (2009). 
[5] 
T. Björk, A. Murgoci and X. Y. Zhou, Mean variance portfolio optimization with state dependent risk aversion,, Mathematical Finance, 24 (2014), 1. doi: 10.1111/j.14679965.2011.00515.x. 
[6] 
K. Boda and J. A. Filar, Time consistent dynamic risk measures,, Mathematical Methods of Operations Research, 63 (2006), 169. doi: 10.1007/s0018600500451. 
[7] 
M. BrittenJones and A. Neuberger, Option prices, implied price processes, and stochastic volatility,, Journal of Finance, 55 (2000), 839. doi: 10.1111/00221082.00228. 
[8] 
U. Çakmak and S. Özekici, Portfolio optimization in stochastic markets,, Mathematical Methods of Operations Research, 63 (2006), 151. doi: 10.1007/s001860050020x. 
[9] 
E. Çanakoğlu and S. Özekici, Portfolio selection in stochastic markets with exponential utility functions,, Annals of Operations Research, 166 (2009), 281. doi: 10.1007/s1047900804062. 
[10] 
U. Çelikyurt and S. Özekici, Multiperiod portfolio optimization models in stochastic markets using the meanvariance approach,, European Journal of Operational Research, 179 (2007), 186. 
[11] 
Z. P. Chen, G. Li and J. E. Guo, Optimal investment policy in the time consistent meanvariance formulation,, Insurance: Mathematics and Economics, 52 (2013), 145. doi: 10.1016/j.insmatheco.2012.11.007. 
[12] 
Z. P. Chen, G. Li and Y. G. Zhao, Timeconsistent investment policies in Markovian markets: A case of meanvariance analysis,, Journal of Economic Dynamic and Control, 40 (2014), 293. doi: 10.1016/j.jedc.2014.01.011. 
[13] 
Z. P. Chen and J. Liu, Time consistent risk measure under twolevel information structure and its application in dynamic portfolio selection,, Working Paper, (2014). 
[14] 
Z. P. Chen and Y. Wang, Twosided coherent risk measures and their application in realistic portfolio optimization,, Journal of Banking and Finance, 32 (2008), 2667. doi: 10.1016/j.jbankfin.2008.07.004. 
[15] 
Z. P. Chen and L. Yang, Nonlinearly weighted convex risk measure and its application,, Journal of Banking and Finance, 35 (2011), 1777. doi: 10.1016/j.jbankfin.2010.12.004. 
[16] 
P. Cheridito and M. Kupper, Composition of timeconsistent dynamic monetary risk measures in discrete time,, Journal of Theoretical and Applied Finance, 14 (2011), 137. doi: 10.1142/S0219024911006292. 
[17] 
X. Y. Cui, D. Li, S. Y. Wang and S. S. Zhu, Better than dynamic meanvariance: Time inconsistency and free cash flow stream,, Mathematical Finance, 22 (2012), 346. doi: 10.1111/j.14679965.2010.00461.x. 
[18] 
C. Czichowsky, Timeconsistent meanvariance portfolio selection in discrete and continuous time,, Finance Stochastic, 17 (2013), 227. doi: 10.1007/s0078001201899. 
[19] 
R. J. Elliott, T. K. Siu and L. Chan, On pricing barrier options with regime switching,, Journal of Computational and Applied Mathematics, 256 (2014), 196. doi: 10.1016/j.cam.2013.07.034. 
[20] 
L. G. Epstein and S. E. Zin, Substitution, risk aversion, and the temporal behavior of consumption and asset returns: A theoretical framework,, Econometrica, 57 (1989), 937. doi: 10.2307/1913778. 
[21] 
H. Geman and S. Ohana, Timeconsistency in managing a commodity portfolio: A dynamic risk measure approach,, Journal of Banking and Finance, 32 (2008), 1991. doi: 10.1016/j.jbankfin.2007.05.020. 
[22] 
R. Korn and H. Kraft, A stochastic control approach to portfolio problems with stochastic interest rates,, SIAM Journal on Control and Optimization, 40 (2002), 1250. doi: 10.1137/S0363012900377791. 
[23] 
D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod meanvariance formulation,, Mathematical Finance, 10 (2000), 387. doi: 10.1111/14679965.00100. 
[24] 
X. Li, X. Y. Zhou and A. E. B. Lim, Dynamic meanvariance portfolio selection with noshorting constraints,, SIAM Journal on Control and Optimization, 40 (2002), 1540. doi: 10.1137/S0363012900378504. 
[25] 
H. J. Lüthi and J. Doege, Convex risk measures for portfolio optimization and concepts of flexibility,, Mathematical Programming, 104 (2005), 541. doi: 10.1007/s101070050628x. 
[26] 
F. Riedel, Dynamic coherent risk measures,, Stochastic Processes and their Applications, 112 (2004), 185. doi: 10.1016/j.spa.2004.03.004. 
[27] 
B. Roorda and J. M. Schumacher, Time consistency conditions for acceptability measures, with an applications to Tail Value at Risk,, Insurance: Mathematics and Economics, 40 (2007), 209. doi: 10.1016/j.insmatheco.2006.04.003. 
[28] 
A. Ruszczyński, Riskaverse dynamic programming for Markov decision processes,, Mathematical Programming, 125 (2010), 235. doi: 10.1007/s1010701003933. 
[29] 
A. Shapiro, On a time consistency concept in risk averse multistage stochastic programming,, Operations Research Letters, 37 (2009), 143. doi: 10.1016/j.orl.2009.02.005. 
[30] 
M. C. Steinbach, Markowitz revisited: Meanvariance models in financial portfolio analysis,, SIAM Review, 43 (2001), 31. doi: 10.1137/S0036144500376650. 
[31] 
T. Wang, A class of dynamic risk measure,, Working Paper, (1999). 
[32] 
J. Wang and P. A. Forsyth, Continuous time mean variance asset allocation: A timeconsistent strategy,, European Journal of Operational Research, 209 (2011), 184. doi: 10.1016/j.ejor.2010.09.038. 
[33] 
S. Z. Wei and Z. X. Ye, Multiperiod optimization portfolio with bankruptcy control in stochastic market,, Applied Mathematics and Computation, 186 (2007), 414. doi: 10.1016/j.amc.2006.07.108. 
[34] 
L. Xu, R. M. Wang and D. J. Yao, Optimal stochastic investment games under Markov regime switching market,, Journal of Industrial and Management Optimization, 10 (2014), 795. doi: 10.3934/jimo.2014.10.795. 
[35] 
X. Y. Zhou and D. Li, Continuoustime meanvariance portfolio selection: A stochastic LQ framework,, Applied Mathematics and Optimization, 42 (2000), 19. doi: 10.1007/s002450010003. 
[36] 
S. S. Zhu, D. Li and S. Y. Wang, Risk control over bankruptcy in dynamic portfolio selection: A generalized meanvariance formulation,, IEEE Transactions on Automatic Control, 49 (2004), 447. doi: 10.1109/TAC.2004.824474. 
show all references
References:
[1] 
P. Artzner, F. Delbaen, J. M. Eber, D. Heath and H. Ku, Coherent multiperiod risk adjusted values and Bellman's principle,, Annals of Operations Research, 152 (2007), 5. doi: 10.1007/s1047900601326. 
[2] 
S. Basak and G. Chabakauri, Dynamic meanvariance asset allocation,, Review of Financial Studies, 23 (2010), 2970. doi: 10.1093/rfs/hhq028. 
[3] 
D. Bertsimas, G. J. Lauprete and A. Samarov, Shortfall as a risk measure: properties, optimization and app1ications,, Journal of Economic Dynamics and Control, 28 (2004), 1353. 
[4] 
T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochastic control problems,, Working Paper, (2009). 
[5] 
T. Björk, A. Murgoci and X. Y. Zhou, Mean variance portfolio optimization with state dependent risk aversion,, Mathematical Finance, 24 (2014), 1. doi: 10.1111/j.14679965.2011.00515.x. 
[6] 
K. Boda and J. A. Filar, Time consistent dynamic risk measures,, Mathematical Methods of Operations Research, 63 (2006), 169. doi: 10.1007/s0018600500451. 
[7] 
M. BrittenJones and A. Neuberger, Option prices, implied price processes, and stochastic volatility,, Journal of Finance, 55 (2000), 839. doi: 10.1111/00221082.00228. 
[8] 
U. Çakmak and S. Özekici, Portfolio optimization in stochastic markets,, Mathematical Methods of Operations Research, 63 (2006), 151. doi: 10.1007/s001860050020x. 
[9] 
E. Çanakoğlu and S. Özekici, Portfolio selection in stochastic markets with exponential utility functions,, Annals of Operations Research, 166 (2009), 281. doi: 10.1007/s1047900804062. 
[10] 
U. Çelikyurt and S. Özekici, Multiperiod portfolio optimization models in stochastic markets using the meanvariance approach,, European Journal of Operational Research, 179 (2007), 186. 
[11] 
Z. P. Chen, G. Li and J. E. Guo, Optimal investment policy in the time consistent meanvariance formulation,, Insurance: Mathematics and Economics, 52 (2013), 145. doi: 10.1016/j.insmatheco.2012.11.007. 
[12] 
Z. P. Chen, G. Li and Y. G. Zhao, Timeconsistent investment policies in Markovian markets: A case of meanvariance analysis,, Journal of Economic Dynamic and Control, 40 (2014), 293. doi: 10.1016/j.jedc.2014.01.011. 
[13] 
Z. P. Chen and J. Liu, Time consistent risk measure under twolevel information structure and its application in dynamic portfolio selection,, Working Paper, (2014). 
[14] 
Z. P. Chen and Y. Wang, Twosided coherent risk measures and their application in realistic portfolio optimization,, Journal of Banking and Finance, 32 (2008), 2667. doi: 10.1016/j.jbankfin.2008.07.004. 
[15] 
Z. P. Chen and L. Yang, Nonlinearly weighted convex risk measure and its application,, Journal of Banking and Finance, 35 (2011), 1777. doi: 10.1016/j.jbankfin.2010.12.004. 
[16] 
P. Cheridito and M. Kupper, Composition of timeconsistent dynamic monetary risk measures in discrete time,, Journal of Theoretical and Applied Finance, 14 (2011), 137. doi: 10.1142/S0219024911006292. 
[17] 
X. Y. Cui, D. Li, S. Y. Wang and S. S. Zhu, Better than dynamic meanvariance: Time inconsistency and free cash flow stream,, Mathematical Finance, 22 (2012), 346. doi: 10.1111/j.14679965.2010.00461.x. 
[18] 
C. Czichowsky, Timeconsistent meanvariance portfolio selection in discrete and continuous time,, Finance Stochastic, 17 (2013), 227. doi: 10.1007/s0078001201899. 
[19] 
R. J. Elliott, T. K. Siu and L. Chan, On pricing barrier options with regime switching,, Journal of Computational and Applied Mathematics, 256 (2014), 196. doi: 10.1016/j.cam.2013.07.034. 
[20] 
L. G. Epstein and S. E. Zin, Substitution, risk aversion, and the temporal behavior of consumption and asset returns: A theoretical framework,, Econometrica, 57 (1989), 937. doi: 10.2307/1913778. 
[21] 
H. Geman and S. Ohana, Timeconsistency in managing a commodity portfolio: A dynamic risk measure approach,, Journal of Banking and Finance, 32 (2008), 1991. doi: 10.1016/j.jbankfin.2007.05.020. 
[22] 
R. Korn and H. Kraft, A stochastic control approach to portfolio problems with stochastic interest rates,, SIAM Journal on Control and Optimization, 40 (2002), 1250. doi: 10.1137/S0363012900377791. 
[23] 
D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod meanvariance formulation,, Mathematical Finance, 10 (2000), 387. doi: 10.1111/14679965.00100. 
[24] 
X. Li, X. Y. Zhou and A. E. B. Lim, Dynamic meanvariance portfolio selection with noshorting constraints,, SIAM Journal on Control and Optimization, 40 (2002), 1540. doi: 10.1137/S0363012900378504. 
[25] 
H. J. Lüthi and J. Doege, Convex risk measures for portfolio optimization and concepts of flexibility,, Mathematical Programming, 104 (2005), 541. doi: 10.1007/s101070050628x. 
[26] 
F. Riedel, Dynamic coherent risk measures,, Stochastic Processes and their Applications, 112 (2004), 185. doi: 10.1016/j.spa.2004.03.004. 
[27] 
B. Roorda and J. M. Schumacher, Time consistency conditions for acceptability measures, with an applications to Tail Value at Risk,, Insurance: Mathematics and Economics, 40 (2007), 209. doi: 10.1016/j.insmatheco.2006.04.003. 
[28] 
A. Ruszczyński, Riskaverse dynamic programming for Markov decision processes,, Mathematical Programming, 125 (2010), 235. doi: 10.1007/s1010701003933. 
[29] 
A. Shapiro, On a time consistency concept in risk averse multistage stochastic programming,, Operations Research Letters, 37 (2009), 143. doi: 10.1016/j.orl.2009.02.005. 
[30] 
M. C. Steinbach, Markowitz revisited: Meanvariance models in financial portfolio analysis,, SIAM Review, 43 (2001), 31. doi: 10.1137/S0036144500376650. 
[31] 
T. Wang, A class of dynamic risk measure,, Working Paper, (1999). 
[32] 
J. Wang and P. A. Forsyth, Continuous time mean variance asset allocation: A timeconsistent strategy,, European Journal of Operational Research, 209 (2011), 184. doi: 10.1016/j.ejor.2010.09.038. 
[33] 
S. Z. Wei and Z. X. Ye, Multiperiod optimization portfolio with bankruptcy control in stochastic market,, Applied Mathematics and Computation, 186 (2007), 414. doi: 10.1016/j.amc.2006.07.108. 
[34] 
L. Xu, R. M. Wang and D. J. Yao, Optimal stochastic investment games under Markov regime switching market,, Journal of Industrial and Management Optimization, 10 (2014), 795. doi: 10.3934/jimo.2014.10.795. 
[35] 
X. Y. Zhou and D. Li, Continuoustime meanvariance portfolio selection: A stochastic LQ framework,, Applied Mathematics and Optimization, 42 (2000), 19. doi: 10.1007/s002450010003. 
[36] 
S. S. Zhu, D. Li and S. Y. Wang, Risk control over bankruptcy in dynamic portfolio selection: A generalized meanvariance formulation,, IEEE Transactions on Automatic Control, 49 (2004), 447. doi: 10.1109/TAC.2004.824474. 
[1] 
Nan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Markowitz's meanvariance optimization with investment and constrained reinsurance. Journal of Industrial & Management Optimization, 2017, 13 (1) : 375397. doi: 10.3934/jimo.2016022 
[2] 
Yan Zeng, Zhongfei Li, Jingjun Liu. Optimal strategies of benchmark and meanvariance portfolio selection problems for insurers. Journal of Industrial & Management Optimization, 2010, 6 (3) : 483496. doi: 10.3934/jimo.2010.6.483 
[3] 
Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the meanvariance utility with statedependent risk aversion. Journal of Industrial & Management Optimization, 2016, 12 (4) : 15211533. doi: 10.3934/jimo.2016.12.1521 
[4] 
Haixiang Yao, Zhongfei Li, Yongzeng Lai. Dynamic meanvariance asset allocation with stochastic interest rate and inflation rate. Journal of Industrial & Management Optimization, 2016, 12 (1) : 187209. doi: 10.3934/jimo.2016.12.187 
[5] 
Zhen Wang, Sanyang Liu. Multiperiod meanvariance portfolio selection with fixed and proportional transaction costs. Journal of Industrial & Management Optimization, 2013, 9 (3) : 643656. doi: 10.3934/jimo.2013.9.643 
[6] 
Xianping Wu, Xun Li, Zhongfei Li. A meanfield formulation for multiperiod assetliability meanvariance portfolio selection with probability constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 249265. doi: 10.3934/jimo.2017045 
[7] 
Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. The optimal mean variance problem with inflation. Discrete & Continuous Dynamical Systems  B, 2016, 21 (1) : 185203. doi: 10.3934/dcdsb.2016.21.185 
[8] 
Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Optimality of (s, S) policies with nonlinear processes. Discrete & Continuous Dynamical Systems  B, 2017, 22 (1) : 161185. doi: 10.3934/dcdsb.2017008 
[9] 
Dingjun Yao, Kun Fan. Optimal risk control and dividend strategies in the presence of two reinsurers: Variance premium principle. Journal of Industrial & Management Optimization, 2017, 13 (4) : 129. doi: 10.3934/jimo.2017090 
[10] 
Suresh P. Sethi, Houmin Yan, J. Houzhong Yan, Hanqin Zhang. An analysis of staged purchases in deregulated timesequential electricity markets. Journal of Industrial & Management Optimization, 2005, 1 (4) : 443463. doi: 10.3934/jimo.2005.1.443 
[11] 
Alain Bensoussan, Sonny Skaaning. Base stock list price policy in continuous time. Discrete & Continuous Dynamical Systems  B, 2017, 22 (1) : 128. doi: 10.3934/dcdsb.2017001 
[12] 
Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571579. doi: 10.3934/proc.2003.2003.571 
[13] 
Qi Feng, Suresh P. Sethi, Houmin Yan, Hanqin Zhang. Optimality and nonoptimality of the basestock policy in inventory problems with multiple delivery modes. Journal of Industrial & Management Optimization, 2006, 2 (1) : 1942. doi: 10.3934/jimo.2006.2.19 
[14] 
Luong V. Nguyen. A note on optimality conditions for optimal exit time problems. Mathematical Control & Related Fields, 2015, 5 (2) : 291303. doi: 10.3934/mcrf.2015.5.291 
[15] 
Sebastià Galmés. Markovian characterization of node lifetime in a timedriven wireless sensor network. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 763780. doi: 10.3934/naco.2011.1.763 
[16] 
Alexander Veretennikov. On large deviations in the averaging principle for SDE's with a "full dependence,'' revisited. Discrete & Continuous Dynamical Systems  B, 2013, 18 (2) : 523549. doi: 10.3934/dcdsb.2013.18.523 
[17] 
Haixiang Yao, Zhongfei Li, Xun Li, Yan Zeng. Optimal Sharpe ratio in continuoustime markets with and without a riskfree asset. Journal of Industrial & Management Optimization, 2017, 13 (3) : 12731290. doi: 10.3934/jimo.2016072 
[18] 
Monika Dryl, Delfim F. M. Torres. Necessary optimality conditions for infinite horizon variational problems on time scales. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 145160. doi: 10.3934/naco.2013.3.145 
[19] 
Ricardo Almeida. Optimality conditions for fractional variational problems with free terminal time. Discrete & Continuous Dynamical Systems  S, 2018, 11 (1) : 119. doi: 10.3934/dcdss.2018001 
[20] 
Pierre Cardaliaguet, JeanMichel Lasry, PierreLouis Lions, Alessio Porretta. Long time average of mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 279301. doi: 10.3934/nhm.2012.7.279 
2016 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]